Independent transversal domination in trees, products and under local changes to a graph

被引:2
作者
Anderson, Sarah E. [1 ]
Kuenzel, K. [2 ]
机构
[1] Univ St Thomas, Dept Math, St Paul, MN 55105 USA
[2] Trinity Coll, Dept Math, Hartford, CT 06106 USA
关键词
Dominating set; Independence; Independent transversal dominating set; SETS;
D O I
10.1007/s00010-022-00896-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An independent transversal dominating set of a graph G is a set S subset of V(G) that but li dominates G and intersects every maximum independent set of G, and gamma(it) (G) is defined to be the minimum cardinality of an independent transversal dominating set of G. In this paper, we investigate how local changes to a graph effect the independent transversal domination number. We also consider the independent transversal domination number in trees and in the Cartesian and disjunctive product of two graphs. In particular, we show that gamma(it)(Q(n)) = gamma(Q(n)) for n >= 2 where Q(n) is the n-dimensional hypercube and we show gamma(it)(P-m square P-n) = gamma(P-m square P-n) where 5 <= m <= n.
引用
收藏
页码:981 / 995
页数:15
相关论文
共 12 条
[1]   Independent Transversal Dominating Sets in Graphs: Complexity and Structural Properties [J].
Ahangar, Hossein Abdollahzadeh ;
Samodivkin, Vladimir ;
Yero, Ismael G. .
FILOMAT, 2016, 30 (02) :293-303
[2]  
Alanko S, 2011, ELECTRON J COMB, V18
[3]   On upper bounds for the independent transversal domination number [J].
Brause, Christoph ;
Henning, Michael A. ;
Ozeki, Kenta ;
Schiermeyer, Ingo ;
Vumar, Elkin .
DISCRETE APPLIED MATHEMATICS, 2018, 236 :66-72
[4]  
Chang T. Y., 1992, Domination numbers of grid graphs
[5]   THE DOMINATION NUMBERS OF THE 5XN AND 6XN GRID GRAPHS [J].
CHANG, TY ;
CLARK, WE .
JOURNAL OF GRAPH THEORY, 1993, 17 (01) :81-107
[6]  
Guzman-Garcia E., 2012, DISCUSS MATH GRAPH T, V32, P5
[7]   INDEPENDENT TRANSVERSAL DOMINATION IN GRAPHS [J].
Hamid, Ismail Sahul .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (01) :5-17
[8]   INDEPENDENT DOMINATION IN HYPERCUBES [J].
HARARY, F ;
LIVINGSTON, M .
APPLIED MATHEMATICS LETTERS, 1993, 6 (03) :27-28
[9]   On Independent Transversal Dominating Sets in Graphs [J].
Sevilleno, Daven S. ;
Jamil, Ferdinand P. .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, 14 (01) :149-163
[10]  
Spalding A, 1998, THESIS U COLORADO DE