WELL-POSEDNESS OF A POROUS MEDIUM FLOW WITH FRACTIONAL PRESSURE IN SOBOLEV SPACES

被引:0
作者
Zhou, Xuhuan [1 ]
Xiao, Weiliang [2 ]
机构
[1] Nanjing Forest Police Coll, Dept Informat Technol, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Univ Finance & Econ, Sch Appl Math, Nanjing 210023, Jiangsu, Peoples R China
关键词
Fractional porous medium equation; Sobolev space; degenerate diffusion transport equation; MEDIUM EQUATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of a non-negative solution for a linear degenerate diffusion transport equation from which we derive the existence and uniqueness of the solution for the fractional porous medium equation in Sobolev spaces H-alpha with nonnegative initial data, alpha > d/2 + 1. We also correct a mistake in our previous paper [14].
引用
收藏
页数:7
相关论文
共 14 条
[1]  
Allen M., 2015, ARXIV150906325
[2]  
[Anonymous], 2012, NONLINEAR PARTIAL DI
[3]   The Nonlocal Porous Medium Equation: Barenblatt Profiles and Other Weak Solutions [J].
Biler, Piotr ;
Imbert, Cyril ;
Karch, Grzegorz .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (02) :497-529
[4]  
Caffarelli L., 2014, ARXIV14098190
[5]  
Caffarelli L., 2012, ARXIV12016048
[6]  
CAFFARELLI L. A., 2010, ARXIV10041096
[7]   Nonlinear Porous Medium Flow with Fractional Potential Pressure [J].
Caffarelli, Luis ;
Vazquez, Juan Luis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (02) :537-565
[8]   Exponential convergence towards stationary states for the 1D porous medium equation with fractional pressure [J].
Carrillo, J. A. ;
Huang, Y. ;
Santos, M. C. ;
Vazquez, J. L. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (03) :736-763
[9]   A maximum principle applied to quasi-geostrophic equations [J].
Córdoba, A ;
Córdoba, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 249 (03) :511-528
[10]   Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space [J].
Ju, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 251 (02) :365-376