Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion

被引:86
作者
Bodrova, Anna S. [1 ,2 ]
Chechkin, Aleksei V. [3 ,4 ,5 ]
Cherstvy, Andrey G. [4 ]
Safdari, Hadiseh [4 ,6 ]
Sokolov, Igor M. [1 ]
Metzler, Ralf [4 ]
机构
[1] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany
[2] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia
[3] Kharkov Inst Phys & Technol, Akhiezer Inst Theoret Phys, UA-61108 Kharkov, Ukraine
[4] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
[5] Univ Padua, Dept Phys & Astron, I-35122 Padua, Italy
[6] Shahid Beheshti Univ, Dept Phys, GC, Tehran 19839, Iran
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
SELF-DIFFUSION; KINETIC-THEORY; LEVY FLIGHTS; RANDOM-WALKS; MODELS; CYTOPLASM; DYNAMICS; NONERGODICITY; SUBDIFFUSION; EQUATIONS;
D O I
10.1038/srep30520
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is quite generally assumed that the overdamped Langevin equation provides a quantitative description of the dynamics of a classical Brownian particle in the long time limit. We establish and investigate a paradigm anomalous diffusion process governed by an underdamped Langevin equation with an explicit time dependence of the system temperature and thus the diffusion and damping coefficients. We show that for this underdamped scaled Brownian motion (UDSBM) the overdamped limit fails to describe the long time behaviour of the system and may practically even not exist at all for a certain range of the parameter values. Thus persistent inertial effects play a non-negligible role even at significantly long times. From this study a general questions on the applicability of the overdamped limit to describe the long time motion of an anomalously diffusing particle arises, with profound consequences for the relevance of overdamped anomalous diffusion models. We elucidate our results in view of analytical and simulations results for the anomalous diffusion of particles in free cooling granular gases.
引用
收藏
页数:16
相关论文
共 89 条
  • [1] [Anonymous], 1986, Statistical Physics
  • [2] Swarming bacteria migrate by Levy Walk
    Ariel, Gil
    Rabani, Amit
    Benisty, Sivan
    Partridge, Jonathan D.
    Harshey, Rasika M.
    Be'er, Avraham
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [3] STRANGE KINETICS of single molecules in living cells
    Barkai, Eli
    Garini, Yuval
    Metzler, Ralf
    [J]. PHYSICS TODAY, 2012, 65 (08) : 29 - 35
  • [4] DIFFUSION IN A FIELD OF HOMOGENEOUS TURBULENCE .2. THE RELATIVE MOTION OF PARTICLES
    BATCHELOR, GK
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1952, 48 (02): : 345 - 362
  • [5] Modeling non-Fickian transport in geological formations as a continuous time random walk
    Berkowitz, Brian
    Cortis, Andrea
    Dentz, Marco
    Scher, Harvey
    [J]. REVIEWS OF GEOPHYSICS, 2006, 44 (02)
  • [6] Quantifying non-ergodic dynamics of force-free granular gases
    Bodrova, Anna
    Chechkin, Aleksei V.
    Cherstvy, Andrey G.
    Metzler, Ralf
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (34) : 21791 - 21798
  • [7] Intermediate Regimes in Granular Brownian Motion: Superdiffusion and Subdiffusion
    Bodrova, Anna
    Dubey, Awadhesh Kumar
    Puri, Sanjay
    Brilliantov, Nikolai
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (17)
  • [8] Self-diffusion in granular gases: an impact of particles' roughness
    Bodrova, Anna
    Brilliantov, Nikolai
    [J]. GRANULAR MATTER, 2012, 14 (02) : 85 - 90
  • [9] Ultraslow scaled Brownian motion
    Bodrova, Anna S.
    Chechkin, Aleksei V.
    Cherstvy, Andrey G.
    Metzler, Ralf
    [J]. NEW JOURNAL OF PHYSICS, 2015, 17
  • [10] ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS
    BOUCHAUD, JP
    GEORGES, A
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5): : 127 - 293