An explicit finite-difference scheme for the solution of the Kadomtsev-Petviashvili equation

被引:11
作者
Bratsos, AG [1 ]
Twizell, EH
机构
[1] Technol Educ Inst Athens, Dept Math, Athens 12210, Greece
[2] Brunel Univ, Dept Math & Stat, Uxbridge UB8 3PH, Middx, England
关键词
Kadomtsev-Petviashvili equation; finite-difference method; explicit scheme;
D O I
10.1080/00207169808804685
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite-difference method is used to transform the initial/boundary-value problem associated with the nonlinear Kadomtsev-Petviashvili equation, into an explicit scheme. The numerical method is developed by replacing the time and space derivatives by central-difference approximants. The resulting finite-difference method is analysed for local truncation error, stability and convergence. The results of a number of numerical experiments are given.
引用
收藏
页码:175 / 187
页数:13
相关论文
共 5 条
[1]  
BRATSOS AG, 1993, THESIS BRUNEL U
[2]   SOLITON-SOLUTIONS OF NON-LINEAR EVOLUTION-EQUATIONS [J].
FREEMAN, NC .
IMA JOURNAL OF APPLIED MATHEMATICS, 1984, 32 (1-3) :125-145
[3]  
Hirota R., 1980, SOLITONS
[4]  
Kadomtsev B. B., 1970, Soviet Physics - Doklady, V15, P539
[5]  
Korteweg D. J., 1985, PHILOS MAG SER, V5, P422