Redefined Output Model-Free Adaptive Control Method and Unmanned Surface Vehicle Heading Control

被引:79
作者
Liao, Yulei [1 ]
Jiang, Quanquan [1 ]
Du, Tingpeng [1 ]
Jiang, Wen [1 ]
机构
[1] Harbin Engn Univ, Sci & Technol Underwater Vehicle Lab, Harbin 15001, Peoples R China
基金
中国国家自然科学基金; 黑龙江省自然科学基金;
关键词
Adaptation models; Mathematical model; Nonlinear dynamical systems; Motion control; Adaptive control; Heading control; model-free adaptive control (MFAC); redefined output; uncertainties; unmanned surface vehicle (USV); CONTROL-SYSTEM; TRACKING CONTROL; GUIDANCE; DESIGN; NAVIGATION; ROBUST;
D O I
10.1109/JOE.2019.2896397
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Based on the model-free adaptive control (MFAC) theory, the heading control problem of an unmanned surface vehicle (USV) with uncertainties is researched. First, the compact form dynamic-linearization-based MFAC (CFDL-MFAC) method and its inherent failure problem with USV heading control are analyzed. Second, to solve the problem that the distinctive dynamic characteristics of USV heading control subsystem make the CFDL-MFAC unsuitable, the redefined output CFDL-MFAC (RO-CFDL- MFAC) method is proposed by introducing redefined output gain. Then, theoretical analysis shows that the RO-CFDL-MFAC method can be applied to the heading control subsystem, that is, it makes the heading control satisfy the quasi-linear assumption of MFAC. Next, the minimum range of redefined output gain and the main influences are analyzed, and the stability of RO-CFDL-MFAC method is theoretically proved. Finally, the simulation studies and field experiments demonstrate the validity and engineering practicability of the RO-CFDL-MFAC method.
引用
收藏
页码:714 / 723
页数:10
相关论文
共 25 条
[1]  
[Anonymous], 1996, MULTISTAGE FUZZY CON
[2]   Sliding-Mode Tracking Control of Surface Vessels [J].
Ashrafiuon, Hashem ;
Muske, Kenneth R. ;
McNinch, Lucas C. ;
Soltan, Reza A. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2008, 55 (11) :4004-4012
[3]   Straight-Line Target Tracking for Unmanned Surface Vehicles [J].
Breivik, Morten ;
Hovstein, Vegard E. ;
Fossen, Thor I. .
MODELING IDENTIFICATION AND CONTROL, 2008, 29 (04) :131-149
[4]  
Brzózka J, 2012, SCI J MARIT UNIV SZC, V30, P25
[5]   Basic navigation, guidance and control of an Unmanned Surface Vehicle [J].
Caccia, Massimo ;
Bibuli, Marco ;
Bono, Riccardo ;
Bruzzone, Gabriele .
AUTONOMOUS ROBOTS, 2008, 25 (04) :349-365
[6]  
Hou ZF, 2014, FIFTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), P1, DOI 10.1109/ICICIP.2014.7010334
[7]   Lazy-Learning-Based Data-Driven Model-Free Adaptive Predictive Control for a Class of Discrete-Time Nonlinear Systems [J].
Hou, Zhongsheng ;
Liu, Shida ;
Tian, Taotao .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (08) :1914-1928
[8]   A self-tuning guidance and control system for marine surface vessels [J].
Khaled, Nassim ;
Chalhoub, Nabil G. .
NONLINEAR DYNAMICS, 2013, 73 (1-2) :897-906
[9]  
Kumar V., INT J INTELL CONTROL, V16, P170
[10]  
Liao Y.L., 2017, J CENT SOUTH UNIV T, V24, P1