STED with wavelengths closer to the emission maximum

被引:77
作者
Vicidomini, Giuseppe [1 ]
Moneron, Gael [1 ]
Eggeling, Christian [1 ]
Rittweger, Eva [1 ,2 ]
Hell, Stefan W. [1 ,2 ]
机构
[1] Max Planck Inst Biophys Chem, Dept NanoBiophoton, D-37077 Gottingen, Germany
[2] German Canc Res Ctr BioQuant, D-69120 Heidelberg, Germany
基金
英国医学研究理事会;
关键词
FIELD OPTICAL NANOSCOPY; DEPLETION FLUORESCENCE MICROSCOPY; DIFFRACTION RESOLUTION LIMIT; STIMULATED-EMISSION; BREAKING; CELLS; BARRIER; DECONVOLUTION; FLUOROPHORES; GFP;
D O I
10.1364/OE.20.005225
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In stimulated emission depletion (STED) nanoscopy the wavelength of the STED beam is usually tuned towards the red tail of the emission maximum of the fluorophore. Shifting the STED wavelength closer to the emission peak, i.e. towards the blue region, favorably increases the stimulated emission cross-section. However, this blue-shifting also increases the probability to excite fluorophores that have remained in their ground state, compromising the image contrast. Here we present a method to exploit the higher STED efficiency of blue-shifted STED beams while maintaining the contrast in the image. The method is exemplified by imaging immunolabeled features in mammalian cells with an up to 3-fold increased STED efficiency compared to that encountered in standard STED nanoscopy implementations. (C) 2012 Optical Society of America
引用
收藏
页码:5225 / 5236
页数:12
相关论文
共 39 条
[11]   Diffraction-unlimited all-optical imaging and writing with a photochromic GFP [J].
Grotjohann, Tim ;
Testa, Ilaria ;
Leutenegger, Marcel ;
Bock, Hannes ;
Urban, Nicolai T. ;
Lavoie-Cardinal, Flavie ;
Willig, Katrin I. ;
Eggeling, Christian ;
Jakobs, Stefan ;
Hell, Stefan W. .
NATURE, 2011, 478 (7368) :204-208
[12]   Resolution scaling in STED microscopy [J].
Harke, Benjamin ;
Keller, Jan ;
Ullal, Chaitanya K. ;
Westphal, Volker ;
Schoenle, Andreas ;
Hell, Stefan W. .
OPTICS EXPRESS, 2008, 16 (06) :4154-4162
[13]  
Hell S. W., 2007, SCI MICROSCOPY
[14]   Far-field optical nanoscopy [J].
Hell, Stefan W. .
SCIENCE, 2007, 316 (5828) :1153-1158
[15]  
Hell SW, 2009, NAT METHODS, V6, P24, DOI [10.1038/NMETH.1291, 10.1038/nmeth.1291]
[16]   Toward fluorescence nanoscopy [J].
Hell, SW .
NATURE BIOTECHNOLOGY, 2003, 21 (11) :1347-1355
[17]   GROUND-STATE-DEPLETION FLUORESCENCE MICROSCOPY - A CONCEPT FOR BREAKING THE DIFFRACTION RESOLUTION LIMIT [J].
HELL, SW ;
KROUG, M .
APPLIED PHYSICS B-LASERS AND OPTICS, 1995, 60 (05) :495-497
[18]   BREAKING THE DIFFRACTION RESOLUTION LIMIT BY STIMULATED-EMISSION - STIMULATED-EMISSION-DEPLETION FLUORESCENCE MICROSCOPY [J].
HELL, SW ;
WICHMANN, J .
OPTICS LETTERS, 1994, 19 (11) :780-782
[19]   Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins [J].
Hofmann, M ;
Eggeling, C ;
Jakobs, S ;
Hell, SW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (49) :17565-17569
[20]   Spectroscopic Rationale for Efficient Stimulated-Emission Depletion Microscopy Fluorophores [J].
Hotta, Jun-ichi ;
Fron, Eduard ;
Dedecker, Peter ;
Janssen, Kris P. F. ;
Li, Chen ;
Muellen, Klaus ;
Harke, Benjamin ;
Bueckers, Johanna ;
Hell, Stefan W. ;
Hofkens, Johan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (14) :5021-+