Benchmarking Contemporary Deep Learning Hardware and Frameworks:A Survey of Qualitative Metrics

被引:31
|
作者
Dai, Wei [1 ]
Berleant, Daniel [2 ]
机构
[1] Southeast Missouri State Univ, Dept Comp Sci, Cape Girardeau, MO USA
[2] Univ Arkansas, Dept ofInformat Sci, Little Rock, AR USA
来源
2019 IEEE FIRST INTERNATIONAL CONFERENCE ON COGNITIVE MACHINE INTELLIGENCE (COGMI 2019) | 2019年
关键词
Deep Learning benchmark; AI hardware and software; MLPerf; AI metrics;
D O I
10.1109/CogMI48466.2019.00029
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper surveys benchmarking principles, machine learning devices including GPUs, FPGAs, and ASICs, and deep learning software frameworks. It also reviews these technologies with respect to benchmarking from the perspectives of a 6-metric approach to frameworks and an 11-metric approach to hardware platforms. Because MLPerf is a benchmark organization working with industry and academia, and offering deep learning benchmarks that evaluate training and inference on deep learning hardware devices, the survey also mentions MLPerf benchmark results, benchmark metrics, datasets, deep learning frameworks and algorithms. We summarize seven benchmarking principles, differential characteristics of mainstream AI devices, and qualitative comparison of deep learning hardware and frameworks.
引用
收藏
页码:148 / 155
页数:8
相关论文
共 50 条
  • [1] Benchmarking Deep Learning Frameworks: Design Considerations, Metrics and Beyond
    Liu, Ling
    Wu, Yanzhao
    Wei, Wenqi
    Cao, Wenqi
    Sahin, Semih
    Zhang, Qi
    2018 IEEE 38TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS), 2018, : 1258 - 1269
  • [2] Performance Assessment of Deep Learning Frameworks through Metrics of CPU Hardware Exploitation on an Embedded Platform
    Velasco-Montero, Delia
    Fernandez-Berni, Jorge
    Carmona-Galan, Ricardo
    Rodriguez-Vazquez, Angel
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2020, 11 (01) : 1 - 11
  • [3] Deep Learning in Reconfigurable Hardware: A Survey
    Dias, Mauricio A.
    Ferreira, Daniel A. P.
    2019 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2019, : 95 - 98
  • [4] A Survey of Deep-learning Frameworks
    Parvat, Aniruddha
    Chavan, Jai
    Kadam, Siddhesh
    Dev, Souradeep
    Pathak, Vidhi
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON INVENTIVE SYSTEMS AND CONTROL (ICISC 2017), 2017, : 211 - 217
  • [5] Survey on Testing of Deep Learning Frameworks
    Ma, Xiang-Yue
    Du, Xiao-Ting
    Cai, Qing
    Zheng, Yang
    Hu, Zheng
    Zheng, Zheng
    Ruan Jian Xue Bao/Journal of Software, 2024, 35 (08): : 3752 - 3784
  • [6] Various Frameworks and Libraries of Machine Learning and Deep Learning: A Survey
    Zhaobin Wang
    Ke Liu
    Jian Li
    Ying Zhu
    Yaonan Zhang
    Archives of Computational Methods in Engineering, 2024, 31 : 1 - 24
  • [7] Various Frameworks and Libraries of Machine Learning and Deep Learning: A Survey
    Wang, Zhaobin
    Liu, Ke
    Li, Jian
    Zhu, Ying
    Zhang, Yaonan
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2024, 31 (01) : 1 - 24
  • [8] Metaheuristic optimization frameworks: a survey and benchmarking
    Antonio Parejo, Jose
    Ruiz-Cortes, Antonio
    Lozano, Sebastian
    Fernandez, Pablo
    SOFT COMPUTING, 2012, 16 (03) : 527 - 561
  • [9] Metaheuristic optimization frameworks: a survey and benchmarking
    José Antonio Parejo
    Antonio Ruiz-Cortés
    Sebastián Lozano
    Pablo Fernandez
    Soft Computing, 2012, 16 : 527 - 561
  • [10] A comprehensive survey of loss functions and metrics in deep learning
    Juan Terven
    Diana-Margarita Cordova-Esparza
    Julio-Alejandro Romero-González
    Alfonso Ramírez-Pedraza
    E. A. Chávez-Urbiola
    Artificial Intelligence Review, 58 (7)