NiPt Nanoparticles Anchored onto Hierarchical Nanoporous N-Doped Carbon as an Efficient Catalyst for Hydrogen Generation from Hydrazine Monohydrate

被引:51
|
作者
Qiu, Yu-Ping [1 ]
Shi, Qing [1 ]
Zhou, Liang-Liang [1 ]
Chen, Mu-Hua [1 ]
Chen, Chen [1 ]
Tang, Piao-Ping [1 ]
Walker, Gavin S. [2 ]
Wang, Ping [1 ]
机构
[1] South China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China
[2] Univ Nottingham, Fac Engn, Adv Mat Res Grp, Nottingham NG7 2RD, England
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
hydrogen generation; hydrazine monohydrate; hierarchical nanostructure; nickel-platinum alloy; nitrogen-doped carbon; HIGHLY EFFICIENT; NI-PT/LA2O3; CATALYST; NI-PT/CEO2; SURFACE-COMPOSITION; RHNI NANOPARTICLES; STORAGE MATERIALS; H-2; GENERATION; REDUCTION; GRAPHENE; DECOMPOSITION;
D O I
10.1021/acsami.0c03096
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Catalytic decomposition of the hydrogen-rich hydrazine monohydrate (N2H4 center dot H2O) represents a promising hydrogen storage/production technology. A rational design of advanced N2H4 center dot H2O decomposition catalysts requires an overall consideration of intrinsic activity, number, and accessibility of active sites. We herein report the synthesis of a hierarchically nanostructured NiPt/N-doped carbon catalyst using a three-step method that can simultaneously address these issues. The chelation of metal precursors with polydopamine and thermolysis of the resulting complexes under reductive atmosphere resulted in a concurrent formation of N-doped carbon substrate and catalytically active NiPt alloy nanoparticles. Thanks to the usage of a silica nanosphere template and dopamine precursor, the N-doped carbon substrate possesses a hierarchical macroporous-mesoporous architecture. This, together with the uniform dispersion of tiny NiPt nanoparticles on the carbon substrate, offers opportunity for creating abundant and accessible active sites. Benefiting from these favorable attributes, the NiPt/N-doped carbon catalyst enables a complete and rapid hydrogen production from alkaline N2H4 center dot H2O solution with a rate of 1602 h(-1) at 50 degrees C, which outperforms most existing catalysts for N2H4 center dot H2O decomposition.
引用
收藏
页码:18617 / 18624
页数:8
相关论文
共 50 条
  • [21] Bimetallic FeCo phosphide nanoparticles anchored on N-doped carbon foam for wide pH hydrogen evolution reaction
    Wen, Yi
    Xu, Shusheng
    Wang, Peijie
    Shao, Xiaoxuan
    Sun, Xuecheng
    Hu, Jing
    Shi, Xue-Rong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 931
  • [22] Highly Dispersed Pt Nanoparticles Embedded in N-Doped Porous Carbon for Efficient Hydrogen Evolution
    Dong, Yuan
    Ying, Jie
    Xiao, Yu-Xuan
    Chen, Jiang-Bo
    Yang, Xiao-Yu
    CHEMISTRY-AN ASIAN JOURNAL, 2021, 16 (14) : 1878 - 1881
  • [23] Iron phosphide nanoparticles anchored on N-doped carbon as efficient electrocatalysts for nitrate reduction reaction
    You, Yang
    Zhang, Lu-Hua
    Zhang, Bo
    Yu, Fengshou
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 342
  • [24] Design and synthesis of a nickel-chromium alloy catalyst for hydrogen generation from hydrazine monohydrate
    He, Jing
    Qiu, Yuping
    Qin, Sihuan
    Wang, Ping
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (46) : 32022 - 32029
  • [25] Immobilization of ultrafine bimetallic nanocatalysts on metal-organic framework-derived N-doped nanoporous carbon/manganese oxide for efficient hydrous hydrazine decomposition
    Yang, Ruoyu
    Ding, Xiang
    Han, Ruqu
    Xu, Linlin
    Liu, Tong
    Xiang, Jun
    NEW JOURNAL OF CHEMISTRY, 2025, 49 (08) : 3266 - 3272
  • [26] Ru-Fe nanoalloys supported on N-doped carbon as efficient catalysts for hydrogen generation from ammonia borane
    Zhou, Daijuan
    Huang, Xiaoyan
    Wen, Hao
    Shen, Ruofan
    Liu, Yanyan
    Guo, Xianji
    Li, Baojun
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (07): : 3677 - 3686
  • [27] Construction of N-doped carbon frames anchored with Co single atoms and Co nanoparticles as robust electrocatalyst for hydrogen evolution in the entire pH range
    Wang, Minmin
    Li, Min
    Zhao, Yilin
    Shi, Naiyou
    Zhang, Hui
    Zhao, Yuxue
    Zhang, Yaru
    Zhang, Haoran
    Wang, Wenhong
    Sun, Kaian
    Pan, Yuan
    Liu, Shoujie
    Zhu, Houyu
    Guo, Wenyue
    Li, Yanpeng
    Liu, Yunqi
    Liu, Chenguang
    JOURNAL OF ENERGY CHEMISTRY, 2022, 67 : 147 - 156
  • [28] CoP/N-Doped Carbon Hollow Spheres Anchored on Electrospinning Core-Shell N-Doped Carbon Nanofibers as Efficient Electrocatalysts for Water Splitting
    Tong, Jinhui
    Li, Yuliang
    Bo, Lili
    Li, Wenyan
    Li, Tao
    Zhang, Qi
    Kong, Deyuan
    Wang, Huan
    Li, Chunyan
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (20) : 17432 - +
  • [29] Ag nanoparticles wrapped by N-doped carbon as an efficient electricatalyst for hydrogen evolution reaction
    Liang, Xin
    Li, Yong
    JOURNAL OF POROUS MATERIALS, 2020, 27 (04) : 1213 - 1218
  • [30] Nanoscale MIL-101 supported RhNi nanoparticles: an efficient catalyst for hydrogen generation from hydrous hydrazine
    Zhao, Pingping
    Cao, Nan
    Luo, Wei
    Cheng, Gongzhen
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (23) : 12468 - 12475