DEEP LEARNING-BASED METHODS FOR DIRECTING THE MANAGEMENT OF RENAL CANCER USING CT SCAN AND CLINICAL INFORMATION

被引:2
作者
Chaudhary, Suman [1 ]
Yang, Wanting [1 ]
Qiang, Yan [1 ]
机构
[1] Taiyuan Univ Technol, Taiyuan, Peoples R China
来源
2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING CHALLENGES (IEEE ISBI 2022) | 2022年
关键词
Renal cancer; Deep Learning; Computed tomography scans; Adjuvant Therapy; NEPHRECTOMY;
D O I
10.1109/ISBIC56247.2022.9854722
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Renal cancer accounts for considerable amounts of new cases and deaths worldwide. In recent years, increment in the use of imaging technology like computed tomography (CT) and magnetic resonance imaging (MRI) has significantly improved the detection of renal cancer. The approach for managing this disease can vary according to the properties of the tumor and the status of the patients. In this paper, we studied the effectiveness of deep learning-based methods for guiding in management of renal cancer using CT and clinical information through two tasks: Task 1 of categorizing whether the patients are eligible for adjuvant therapy and Task 2 of classifying patients into one of the five risk groups as suggested by American urological association (AUA). We evaluated our methods on the "Kidney clinical Notes and Imaging to Guide and Help personalize Treatment and biomarkers discovery (KNIGHT) challenge" database with 300 cases for training and validation and an additional 100 cases for testing. We performed various experiments using only CT scans, only clinical data, and combining CT and clinical data. The best results we achieved is an area under the curve (AUC) of 0.813 on Task 1 and 0.626 on Task 2 through the TabNet model, which utilizes only clinical data. These promising results demonstrate the potential of a deep learning-based method to direct renal cancer management from CT and clinical data.
引用
收藏
页数:4
相关论文
共 12 条
[1]  
Arik SO, 2021, AAAI CONF ARTIF INTE, V35, P6679
[2]   Adjuvant Pembrolizumab after Nephrectomy in Renal-Cell Carcinoma [J].
Choueiri, T. K. ;
Tomczak, P. ;
Park, S. H. ;
Venugopal, B. ;
Ferguson, T. ;
Chang, Y. -H. ;
Hajek, J. ;
Symeonides, S. N. ;
Lee, J. L. ;
Sarwar, N. ;
Thiery-Vuillemin, A. ;
Gross-Goupil, M. ;
Mahave, M. ;
Haas, N. B. ;
Sawrycki, P. ;
Gurney, H. ;
Chevreau, C. ;
Melichar, B. ;
Kopyltsov, E. ;
Alva, A. ;
Burke, J. M. ;
Doshi, G. ;
Topart, D. ;
Oudard, S. ;
Hammers, H. ;
Kitamura, H. ;
Bedke, J. ;
Perini, R. F. ;
Zhang, P. ;
Imai, K. ;
Willemann-Rogerio, J. ;
Quinn, D. I. ;
Powles, T. .
NEW ENGLAND JOURNAL OF MEDICINE, 2021, 385 (08) :683-694
[3]   Preoperative Aspects and Dimensions Used for an Anatomical (PADUA) Classification of Renal Tumours in Patients who are Candidates for Nephron-Sparing Surgery [J].
Ficarra, Vincenzo ;
Novara, Giacomo ;
Secco, Silvia ;
Macchi, Veronica ;
Porzionato, Andrea ;
De Caro, Raffaele ;
Artibani, Walter .
EUROPEAN UROLOGY, 2009, 56 (05) :786-793
[4]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[5]   The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: Results of the KiTS19 challenge [J].
Heller, Nicholas ;
Isensee, Fabian ;
Maier-Hein, Klaus H. ;
Hou, Xiaoshuai ;
Xie, Chunmei ;
Li, Fengyi ;
Nan, Yang ;
Mu, Guangrui ;
Lin, Zhiyong ;
Han, Miofei ;
Yao, Guang ;
Gao, Yaozong ;
Zhang, Yao ;
Wang, Yixin ;
Hou, Feng ;
Yang, Jiawei ;
Xiong, Guangwei ;
Tian, Jiang ;
Zhong, Cheng ;
Ma, Jun ;
Rickman, Jack ;
Dean, Joshua ;
Stai, Bethany ;
Tejpaul, Resha ;
Oestreich, Makinna ;
Blake, Paul ;
Kaluzniak, Heather ;
Raza, Shaneabbas ;
Rosenberg, Joel ;
Moore, Keenan ;
Walczak, Edward ;
Rengel, Zachary ;
Edgerton, Zach ;
Vasdev, Ranveer ;
Peterson, Matthew ;
McSweeney, Sean ;
Peterson, Sarah ;
Kalapara, Arveen ;
Sathianathen, Niranjan ;
Papanikolopoulos, Nikolaos ;
Weight, Christopher .
MEDICAL IMAGE ANALYSIS, 2021, 67
[6]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372]
[7]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[8]   The RENAL Nephrometry Score: A Comprehensive Standardized System for Quantitating Renal Tumor Size, Location and Depth [J].
Kutikov, Alexander ;
Uzzo, Robert G. .
JOURNAL OF UROLOGY, 2009, 182 (03) :844-853
[9]   Adjuvant Sunitinib for High-risk Renal Cell Carcinoma After Nephrectomy: Subgroup Analyses and Updated Overall Survival Results [J].
Motzer, Robert J. ;
Ravaud, Alain ;
Patard, Jean-Jacques ;
Pandha, Hardev S. ;
George, Daniel J. ;
Patel, Anup ;
Chang, Yen-Hwa ;
Escudier, Bernard ;
Donskov, Frede ;
Magheli, Ahmed ;
Carteni, Giacomo ;
Laguerre, Brigitte ;
Tomczak, Piotr ;
Breza, Jan ;
Gerletti, Paola ;
Lechuga, Mariajose ;
Lin, Xun ;
Casey, Michelle ;
Serfass, Lucile ;
Pantuck, Allan J. ;
Staehler, Michael .
EUROPEAN UROLOGY, 2018, 73 (01) :62-68
[10]  
Motzer Robert J, 2015, J Natl Compr Canc Netw, V13, P151