Boosting Catalysis of Pd Nanoparticles in MOFs by Pore Wall Engineering: The Roles of Electron Transfer and Adsorption Energy

被引:229
作者
Chen, Dongxiao [1 ]
Yang, Weijie [2 ]
Jiao, Long [1 ]
Li, Luyan [1 ]
Yu, Shu-Hong [1 ]
Jiang, Hai-Long [1 ]
机构
[1] Univ Sci & Technol China, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Hefei Natl Lab Phys Sci Microscale, CAS Key Lab Soft Matter Chem,Dept Chem, Hefei 230026, Anhui, Peoples R China
[2] North China Elect Power Univ, Sch Energy & Power Engn, Baoding 071003, Hebei, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
adsorption energy; electron transfer; metal nanoparticles; metal-organic frameworks; microenvironment regulation; METAL-ORGANIC FRAMEWORKS; N-DOPED CARBON; BENZOIC-ACID; SURFACE; HYDROGENATION; NANOCRYSTALS; CHEMISTRY; UIO-66;
D O I
10.1002/adma.202000041
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The chemical environment of metal nanoparticles (NPs) possesses significant influence on their catalytic performance yet is far from being well understood. Herein, tiny Pd NPs are encapsulated into the pore space of metal-organic frameworks (MOFs), UiO-66-X (X = H, OMe, NH2, 2OH, 2OH(Hf)), affording Pd@UiO-66-X composites. The surface microenvironment of the Pd NPs is readily modulated by pore wall engineering, via the functional group and metal substitution in the MOFs. Consequently, the catalytic activity of Pd@UiO-66-X follows the order of Pd@UiO-66-OH > Pd@UiO-66-2OH(Hf) > Pd@UiO-66-NH2> Pd@UiO-66-OMe > Pd@UiO-66-H toward the hydrogenation of benzoic acid. It is found that the activity difference is not only ascribed to the distinct charge transfer between Pd and the MOF, but is also explained by the discriminated substrate adsorption energy of Pd@UiO-66-X (-OH < -2OH(Hf) < -NH2< -OMe < -H), based on CO-diffuse reflectance infrared Fourier transform spectra and density-functional theory (DFT) calculations. The Pd@UiO-66-OH, featuring a high Pd electronic state and moderate adsorption energy, displays the highest activity. This work highlights the influence of the surface microenvironment of guest metal NPs, the catalytic activity of which is dominated by electron transfer and the adsorption energy, via the systematic substitution of metal and functional groups in host MOFs.
引用
收藏
页数:6
相关论文
共 50 条
[1]   Immobilizing Highly Catalytically Active Pt Nanoparticles inside the Pores of Metal-Organic Framework: A Double Solvents Approach [J].
Aijaz, Arshad ;
Karkamkar, Abhi ;
Choi, Young Joon ;
Tsumori, Nobuko ;
Roennebro, Ewa ;
Autrey, Tom ;
Shioyama, Hiroshi ;
Xu, Qiang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (34) :13926-13929
[2]  
[Anonymous], 1996, PHYS REV B
[3]   A General Strategy for the Synthesis of Functionalised UiO-66 Frameworks: Characterisation, Stability and CO2 Adsorption Properties [J].
Biswas, Shyam ;
Van der Voort, Pascal .
EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2013, (12) :2154-2160
[4]   Encapsulating soluble active species into hollow crystalline porous capsules beyond integration of homogeneous and heterogeneous catalysis [J].
Cai, Guorui ;
Ding, Meili ;
Wu, Qianye ;
Jiang, Hai-Long .
NATIONAL SCIENCE REVIEW, 2020, 7 (01) :37-45
[5]   A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability [J].
Cavka, Jasmina Hafizovic ;
Jakobsen, Soren ;
Olsbye, Unni ;
Guillou, Nathalie ;
Lamberti, Carlo ;
Bordiga, Silvia ;
Lillerud, Karl Petter .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (42) :13850-13851
[6]   Multifunctional PdAg@MIL-101 for One-Pot Cascade Reactions: Combination of Host-Guest Cooperation and Bimetallic Synergy in Catalysis [J].
Chen, Yu-Zhen ;
Zhou, Yu-Xiao ;
Wang, Hengwei ;
Lu, Junling ;
Uchida, Takeyuki ;
Qiang, Xu ;
Yu, Shu-Hong ;
Jiang, Hai-Long .
ACS CATALYSIS, 2015, 5 (04) :2062-2069
[7]   Utilization of the three-dimensional volcano surface to understand the chemistry of multiphase systems in heterogeneous catalysis [J].
Cheng, Jun ;
Hu, P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (33) :10868-+
[8]   Chemical Environment Control and Enhanced Catalytic Performance of Platinum Nanoparticles Embedded in Nanocrystalline Metal-Organic Frameworks [J].
Choi, Kyung Min ;
Na, Kyungsu ;
Somorjai, Gabor A. ;
Yaghi, Omar M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (24) :7810-7816
[9]   Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis [J].
Crooks, RM ;
Zhao, MQ ;
Sun, L ;
Chechik, V ;
Yeung, LK .
ACCOUNTS OF CHEMICAL RESEARCH, 2001, 34 (03) :181-190
[10]  
Hammer B, 2000, ADV CATAL, V45, P71