Interval Safety Layer Coupled With an Impulsive MPC for Artificial Pancreas to Handle Intrapatient Variability

被引:0
作者
Villa-Tamayo, Maria F. [1 ]
Garcia-Jaramillo, Maira [2 ]
Leon-Vargas, Fabian [3 ]
Rivadeneira, Pablo S. [1 ]
机构
[1] Univ Nacl Colombia, Fac Minas, Grp GITA, Medellin, Colombia
[2] Univ EAN, Fac Ingn, Grp ONTARE, Bogota, Colombia
[3] Univ Antonio Narino, Fac Ingn Mecan Elect & Biomed FIMEB, Grp REM, Bogota, Colombia
关键词
artificial pancreas; insulin on board; interval model; model predictive control; safety layer; type; 1; diabetes; MODEL-PREDICTIVE CONTROL; POSTPRANDIAL BLOOD-GLUCOSE; IN-SILICO EVALUATION; INSULIN DELIVERY; BOLUS CALCULATOR; SYSTEMS; UNCERTAINTY; STRATEGY;
D O I
10.3389/fendo.2022.796521
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The aim of control strategies for artificial pancreas systems is to calculate the insulin doses required by a subject with type 1 diabetes to regulate blood glucose levels by reducing hyperglycemia and avoiding the induction of hypoglycemia. Several control formulations developed for this end involve a safety constraint given by the insulin on board (IOB) estimation. This constraint has the purpose of reducing hypoglycemic episodes caused by insulin stacking. However, intrapatient variability constantly changes the patient's response to insulin, and thus, an adaptive method is required to restrict the control action according to the current situation of the subject. In this work, the control action computed by an impulsive model predictive controller is modulated with a safety layer to satisfy an adaptive IOB constraint. This constraint is established with two main steps. First, upper and lower IOB bounds are generated with an interval model that accounts for parameter uncertainty, and thus, define the possible system responses. Second, the constraint is selected according to the current value of glycemia, an estimation of the plant-model mismatch, and their corresponding first and second time derivatives to anticipate the changes of both glucose levels and physiological variations. With this strategy satisfactory results were obtained in an adult cohort where random circadian variability and sensor noise were considered. A 92% time in normoglycemia was obtained, representing an increase of time in range compared to previous MPC strategies, and a reduction of time in hypoglycemia to 0% was achieved without dangerously increasing the time in hyperglycemia.
引用
收藏
页数:13
相关论文
共 46 条
[1]   Artificial pancreas under stable pulsatile MPC: Improving the closed-loop performance [J].
Abuin, P. ;
Rivadeneira, P. S. ;
Ferramosca, A. ;
Gonzalez, A. H. .
JOURNAL OF PROCESS CONTROL, 2020, 92 :246-260
[2]   Adaptive model predictive control for a dual-hormone artificial pancreas [J].
Boiroux, Dimitri ;
Batora, Vladimir ;
Hagdrup, Morten ;
Wendt, Sabrina Lyngbye ;
Poulsen, Niels Kjolstad ;
Madsen, Henrik ;
Jorgensen, John Bagterp .
JOURNAL OF PROCESS CONTROL, 2018, 68 :105-117
[3]   Fully Integrated Artificial Pancreas in Type 1 Diabetes: Modular Closed-Loop Glucose Control Maintains Near Normoglycemia [J].
Breton, Marc ;
Farret, Anne ;
Bruttomesso, Daniela ;
Anderson, Stacey ;
Magni, Lalo ;
Patek, Stephen ;
Man, Chiara Dalla ;
Place, Jerome ;
Demartini, Susan ;
Del Favero, Simone ;
Toffanin, Chiara ;
Hughes-Karvetski, Colleen ;
Dassau, Eyal ;
Zisser, Howard ;
Doyle, Francis J., III ;
De Nicolao, Giuseppe ;
Avogaro, Angelo ;
Cobelli, Claudio ;
Renard, Eric ;
Kovatchev, Boris .
DIABETES, 2012, 61 (09) :2230-2237
[4]   Comparison of interval and Monte Carlo simulation for the prediction of postprandial glucose under uncertainty in type 1 diabetes mellitus [J].
Calm, R. ;
Garcia-Jaramillo, M. ;
Bondia, J. ;
Sainz, M. A. ;
Vehi, J. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2011, 104 (03) :325-332
[5]   Automatic regulatory control in type 1 diabetes without carbohydrate counting [J].
Colmegna, Patricio ;
Garelli, Fabricio ;
De Battista, Herman ;
Sanchez-Pena, Ricardo .
CONTROL ENGINEERING PRACTICE, 2018, 74 :22-32
[6]   Twelve-Week 24/7 Ambulatory Artificial Pancreas With Weekly Adaptation of Insulin Delivery Settings: Effect on Hemoglobin A1c and Hypoglycemia [J].
Dassau, Eyal ;
Pinsker, Jordan E. ;
Kudva, Yogish C. ;
Brown, Sue A. ;
Gondhalekar, Ravi ;
Man, Chiara Dalla ;
Patek, Steve ;
Schiavon, Michele ;
Dadlani, Vikash ;
Dasanayake, Isuru ;
Church, Mei Mei ;
Carter, Rickey E. ;
Bevier, Wendy C. ;
Huyett, Lauren M. ;
Hughes, Jonathan ;
Anderson, Stacey ;
Lv, Dayu ;
Schertz, Elaine ;
Emory, Emma ;
McCrady-Spitzer, Shelly K. ;
Jean, Tyler ;
Bradley, Paige K. ;
Hinshaw, Ling ;
Sanz, Alejandro J. Laguna ;
Basu, Ananda ;
Kovatchev, Boris ;
Cobelli, Claudio ;
Doyle, Francis J., III .
DIABETES CARE, 2017, 40 (12) :1719-1726
[7]  
Donner T., 2019, INSULIN PHARM THERAP
[8]   Closed- Loop Artificial Pancreas Systems: Engineering the Algorithms [J].
Doyle, Francis J., III ;
Huyett, Lauren M. ;
Lee, Joon Bok ;
Zisser, Howard C. ;
Dassau, Eyal .
DIABETES CARE, 2014, 37 (05) :1191-1197
[9]   The Artificial Pancreas and Meal Control AN OVERVIEW OF POSTPRANDIAL GLUCOSE REGULATION IN TYPE 1 DIABETES [J].
El Fathi, Anas ;
Smaoui, Mohamed Raef ;
Gingras, Veronique ;
Boulet, Benoit ;
Haidar, Ahmad .
IEEE CONTROL SYSTEMS MAGAZINE, 2018, 38 (01) :67-85
[10]  
Ellingsen Christian, 2009, J Diabetes Sci Technol, V3, P536