Typical Gaussian quantum information

被引:1
作者
Sohr, Philipp [1 ]
Link, Valentin [1 ]
Luoma, Kimmo [1 ]
Strunz, Walter T. [1 ]
机构
[1] Tech Univ Dresden, Inst Theoret Phys, D-01062 Dresden, Germany
关键词
geometry of quantum states; quantum information theory; Gaussian states; quantum nonlocality; ENTANGLEMENT; VOLUME; STATES; SET;
D O I
10.1088/1751-8121/aaf365
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate different geometries and invariant measures on the space of mixed Gaussian quantum states. We show that when the global purity of the state is held fixed, these measures coincide and it is possible, within this constraint, to define a unique notion of volume on the space of mixed Gaussian states. We then use the so defined measure to study typical non-classical correlations of two mode mixed Gaussian quantum states, in particular entanglement and steerability. We show that under the purity constraint alone, typical values for symplectic invariants can be computed very elegantly, irrespectively of the non-compactness of the underlying state space. Then we consider finite volumes by constraining the purity and energy of the Gaussian state and compute typical values of quantum correlations numerically.
引用
收藏
页数:16
相关论文
共 38 条
[31]   Canonical and micro-canonical typical entanglement of continuous variable systems [J].
Serafini, A. ;
Dahlsten, O. C. O. ;
Gross, D. ;
Plenio, M. B. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (31) :9551-9576
[32]   Peres-Horodecki separability criterion for continuous variable systems [J].
Simon, R .
PHYSICAL REVIEW LETTERS, 2000, 84 (12) :2726-2729
[33]   GAUSSIAN PURE STATES IN QUANTUM-MECHANICS AND THE SYMPLECTIC GROUP [J].
SIMON, R ;
SUDARSHAN, ECG ;
MUKUNDA, N .
PHYSICAL REVIEW A, 1988, 37 (08) :3028-3038
[34]   Gaussian quantum information [J].
Weedbrook, Christian ;
Pirandola, Stefano ;
Garcia-Patron, Raul ;
Cerf, Nicolas J. ;
Ralph, Timothy C. ;
Shapiro, Jeffrey H. ;
Lloyd, Seth .
REVIEWS OF MODERN PHYSICS, 2012, 84 (02) :621-669
[35]   On the algebraic problem concerning the normal forms of linear dynamical systems [J].
Williamson, J .
AMERICAN JOURNAL OF MATHEMATICS, 1936, 58 :141-163
[36]   Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox [J].
Wiseman, H. M. ;
Jones, S. J. ;
Doherty, A. C. .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[37]   Volume of the set of separable states. II [J].
Zyczkowski, K .
PHYSICAL REVIEW A, 1999, 60 (05) :3496-3507
[38]  
Zyczkowski K, 1998, PHYS REV A, V58, P883, DOI 10.1103/PhysRevA.58.883