Predation changes the shape of thermal performance curves for population growth rate

被引:32
作者
Luhring, Thomas M. [1 ]
DeLong, John P. [1 ]
机构
[1] Univ Nebraska, Sch Biol Sci, Lincoln, NE 68588 USA
关键词
paramecium; phenotypic plasticity; predation; reaction norm; temperature; thermal performance curve; CLIMATE; TEMPERATURE; SELECTION; RISK; CONSEQUENCES; ECTOTHERMS; FITNESS; ECOLOGY; MODEL; SIZE;
D O I
10.1093/cz/zow045
中图分类号
Q95 [动物学];
学科分类号
071002 ;
摘要
Ectotherms generally demonstrate nonlinear changes in performance (e.g., movement speed, individual growth, population growth) as a function of temperature that are characterized by thermal performance curves (TPC). Predation risk elicits phenotypic and behavioral changes that likewise impact performance measures. We tested whether exposure to predation Orthocyclops modestus impacts the maximum population growth rate (r(max)) TPC of the protist Paramecium aurelia. We fit predator and non-predator exposed P. aurelia population growth rates to a function previously shown to best describe Paramecium population growth rate TPC's (Lactin-2) and compared subsequent parameter estimates between curves. For Paramecium exposed to predation risk, maximum population growth increased more rapidly as temperatures rose and decreased more rapidly as temperatures fell compared to the initial temperature. The area under each TPC curve remained approximately the same, consistent with the idea of a trade-off in performance across temperatures. Our results indicate TPCs are flexible given variation in food web context and that trophic interactions may play an important role in shaping TPCs. Furthermore, this and other studies illustrate the need for a mechanistic model of TPCs with parameters tied to biologically meaningful properties.
引用
收藏
页码:501 / 505
页数:5
相关论文
共 35 条
[1]  
Angilletta MJ, 2009, BIO HABIT, P1, DOI 10.1093/acprof:oso/9780198570875.001.1
[2]   Predator-induced phenotypic plasticity in organisms with complex life histories [J].
Benard, MF .
ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS, 2004, 35 :651-673
[3]   The Mean and Variance of Environmental Temperature Interact to Determine Physiological Tolerance and Fitness [J].
Bozinovic, Francisco ;
Bastias, Daniel A. ;
Boher, Francisca ;
Clavijo-Baquet, Sabrina ;
Estay, Sergio A. ;
Angilletta, Michael J., Jr. .
PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY, 2011, 84 (06) :543-552
[4]   Life-history evolution under a production constraint [J].
Brown, James H. ;
Sibly, Richard M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (47) :17595-17599
[5]  
Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000
[6]   Climatic Predictors of Temperature Performance Curve Parameters in Ectotherms Imply Complex Responses to Climate Change [J].
Clusella-Trullas, Susana ;
Blackburn, Tim M. ;
Chown, Steven L. .
AMERICAN NATURALIST, 2011, 177 (06) :738-751
[7]   THE POPULATION CONSEQUENCES OF LIFE HISTORY PHENOMENA [J].
COLE, LC .
QUARTERLY REVIEW OF BIOLOGY, 1954, 29 (02) :103-137
[8]   Predation risk shapes thermal physiology of a predaceous damselfly [J].
Culler, Lauren E. ;
McPeek, Mark A. ;
Ayres, Matthew P. .
OECOLOGIA, 2014, 176 (03) :653-660
[9]   Impacts of climate warming on terrestrial ectotherms across latitude [J].
Deutsch, Curtis A. ;
Tewksbury, Joshua J. ;
Huey, Raymond B. ;
Sheldon, Kimberly S. ;
Ghalambor, Cameron K. ;
Haak, David C. ;
Martin, Paul R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (18) :6668-6672
[10]   Climate extremes: Observations, modeling, and impacts [J].
Easterling, DR ;
Meehl, GA ;
Parmesan, C ;
Changnon, SA ;
Karl, TR ;
Mearns, LO .
SCIENCE, 2000, 289 (5487) :2068-2074