Brush-Like Cobalt Nitride Anchored Carbon Nanofiber Membrane: Current Collector Catalyst Integrated Cathode for Long Cycle Li-O2 Batteries

被引:254
作者
Yoon, Ki Ro [1 ]
Shin, Kihyun [1 ]
Park, Jiwon [2 ,3 ]
Cho, Su-Ho [1 ]
Kim, Chanhoon [1 ]
Jung, Ji-Won [1 ]
Cheong, Jun Young [1 ]
Byon, Hye Ryung [2 ,3 ]
Lee, Hyuk Mo [1 ]
Kim, Il-Doo [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Chem, 291 Daehak Ro, Daejeon 34141, South Korea
[3] KAIST Inst NanoCentury, 291 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
cobalt nitrides; carbon nanofibers; lithium-oxygen batteries; flexible; air cathodes; MOLYBDENUM NITRIDE; OXYGEN REDUCTION; NANOWIRE ARRAYS; EFFICIENT; EVOLUTION; ELECTROCATALYSTS; NITROGEN; ARCHITECTURES; FABRICATION; ELECTRODES;
D O I
10.1021/acsnano.7b03794
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To achieve a high reversibility and long cycle life for lithium-oxygen (Li-O-2) batteries, the irreversible formation of Li2O2, inevitable side reactions, and poor charge transport at the cathode interfaces should be overcome. Here, we report a rational design of air cathode using a cobalt nitride (Co4N) functionalized carbon nanofiber (CNF) membrane as current collector-catalyst integrated air cathode. Brush-like Co4N nanorods are uniformly anchored on conductive electrospun CNF papers via hydrothermal growth of Co(OH)F nanorods followed by nitridation step. Co4N-decorated CNF (Co4N/CNF) cathode exhibited excellent electrochemical performance with outstanding stability for over 177 cycles in Li-O-2 cells. During cycling, metallic Co4N nanorods provide sufficient accessible reaction sites as well as facile electron transport pathway throughout the continuously networked CNF. Furthermore, thin oxide layer (<10 nm) formed on the surface of Co4N nanorods promote reversible formation/decomposition of film-type Li2O2, leading to significant reduction in overpotential gap (similar to 1.23 V at 700 mAh g(-3)). Moreover, pouch-type Li-air cells using Co4N/CNF cathode stably operated in real air atmosphere even under 180 degrees bending. The results demonstrate that the favorable formation/decomposition of reaction products and mediation of side reactions are hugely governed by the suitable surface chemistry and tailored structure of cathode materials, which are essential for real Li-air battery applications.
引用
收藏
页码:128 / 139
页数:12
相关论文
共 62 条
[1]   Facile Fabrication of an Efficient Oxynitride TaON Photoanode for Overall Water Splitting into H2 and O2 under Visible Light Irradiation [J].
Abe, Ryu ;
Higashi, Masanobu ;
Domen, Kazunari .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (34) :11828-11829
[2]   The Importance of Nanometric Passivating Films on Cathodes for Li-Air Batteries [J].
Adams, Brian D. ;
Black, Robert ;
Radtke, Claudio ;
Williams, Zack ;
Mehdi, B. Layla ;
Browning, Nigel D. ;
Nazar, Linda F. .
ACS NANO, 2014, 8 (12) :12483-12493
[3]  
Aetukuri NB, 2015, NAT CHEM, V7, P50, DOI [10.1038/nchem.2132, 10.1038/NCHEM.2132]
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]  
Aurbach D, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.128, 10.1038/NENERGY.2016.128]
[6]   Screening for Superoxide Reactivity in Li-O2 Batteries: Effect on Li2O2/LiOH Crystallization [J].
Black, Robert ;
Oh, Si Hyoung ;
Lee, Jin-Hyon ;
Yim, Taeeun ;
Adams, Brian ;
Nazar, Linda F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (06) :2902-2905
[7]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/NMAT3191, 10.1038/nmat3191]
[8]   Mixed Close-Packed Cobalt Molybdenum Nitrides as Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction [J].
Cao, Bingfei ;
Veith, Gabriel M. ;
Neuefeind, Joerg C. ;
Adzic, Radoslav R. ;
Khalifah, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (51) :19186-19192
[9]   Cobalt nitrides as a class of metallic electrocatalysts for the oxygen evolution reaction [J].
Chen, Pengzuo ;
Xu, Kun ;
Tong, Yun ;
Li, Xiuling ;
Tao, Shi ;
Fang, Zhiwei ;
Chu, Wangsheng ;
Wu, Xiaojun ;
Wu, Changzheng .
INORGANIC CHEMISTRY FRONTIERS, 2016, 3 (02) :236-242
[10]   Metallic Co4N Porous Nanowire Arrays Activated by Surface Oxidation as Electrocatalysts for the Oxygen Evolution Reaction [J].
Chen, Pengzuo ;
Xu, Kun ;
Fang, Zhiwei ;
Tong, Yun ;
Wu, Junchi ;
Lu, Xiuli ;
Peng, Xu ;
Ding, Hui ;
Wu, Changzheng ;
Xie, Yi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (49) :14710-14714