共 50 条
11-Keto- β -Boswellic Acid Attenuates Glutamate Release and Kainic Acid-Induced Excitotoxicity in the Rat Hippocampus
被引:16
|作者:
Lu, Cheng Wei
[1
,3
]
Lin, Tzu Yu
[1
,3
]
Wang, Su Jane
[2
,4
]
机构:
[1] Far Eastern Mem Hosp, Dept Anesthesiol, New Taipei, Taiwan
[2] Fu Jen Catholic Univ, Sch Med, 510 Chung Cheng Rd, New Taipei 24205, Hsin Chuang, Taiwan
[3] Yuan Ze Univ, Dept Mech Engn, Taoyuan, Taiwan
[4] Chang Gung Univ Sci & Technol, Res Ctr Chinese Herbal Med, Coll Human Ecol, Taoyuan, Taiwan
关键词:
Burseraceae;
Boswellia serrata;
KBA;
presynaptic glutamate release;
kainic acid;
neuroprotection;
hippocampus;
RECEPTOR-MEDIATED FACILITATION;
KAINATE-INDUCED EXCITOTOXICITY;
OXIDATIVE STRESS;
11-KETO-BETA-BOSWELLIC ACID;
REPERFUSION INJURY;
CEREBRAL-ISCHEMIA;
NERVE-TERMINALS;
GENE-EXPRESSION;
MEDICINAL HERBS;
SERRATA;
D O I:
10.1055/a-1107-9337
中图分类号:
Q94 [植物学];
学科分类号:
071001 ;
摘要:
Excessive glutamate concentration induces neuronal death in acute brain injuries and chronic neurodegenerative diseases. Natural compounds from medicinal plants have attracted considerable attention for their use in the prevention and treatment of neurological disorders. 11-Keto- beta -boswellic acid, a triterpenoid found in the medicinal plant Boswellia serrata , has neuroprotective potential. The present study investigated the effect of 11-keto- beta -boswellic acid on glutamate release in vitro and kainic acid-induced glutamate excitotoxicity in vivo in the rat hippocampus. In rat hippocampal nerve terminals (synaptosomes), 11-keto- beta -boswellic acid dose-dependently inhibited 4-aminopyridine-stimulated glutamate release. This effect was dependent on extracellular calcium, persisted in the presence of the glutamate transporter inhibitor DL-threo- beta -benzyloxyaspartate, and was blocked by the vesicular transporter inhibitor bafilomycin A1. In addition, 11-keto- beta -boswellic acid reduced the 4-aminopyridine-induced increase in intrasynaptosomal Ca (2+) levels. The N- and P/Q-type channel blocker omega -conotoxin MVIIC and the protein kinase A inhibitor H89 significantly suppressed the 11-keto- beta -boswellic acid-mediated inhibition of glutamate release, whereas the intracellular Ca (2+) -releasing inhibitors dantrolene, CGP37157, and xestospongin C, mitogen-activated protein kinase inhibitor PD98059, as well as protein kinase C inhibitor calphostin C had no effect. In a rat model of excitotoxicity induced by intraperitoneal kainic acid injection (15 mg/kg), intraperitoneal 11-keto- beta -boswellic acid administration (10 or 50 mg/kg) 30 min before kainic acid injection considerably ameliorated kainic acid-induced glutamate concentration elevation and CA3 neuronal death. These data suggested that 11-keto- beta -boswellic acid inhibits glutamate release from the rat hippocampal synaptosomes by suppressing N- and P/Q-type Ca (2+) channels and protein kinase A activity, as well as exerts protective effects against kainic acid-induced excitotoxicity in vivo .
引用
收藏
页码:434 / 441
页数:8
相关论文