A hierarchical feature fusion framework for adaptive visual tracking

被引:9
作者
Makris, Alexandros [1 ,2 ]
Kosmopoulos, Dimitrios [1 ]
Perantonis, Stavros [1 ]
Theodoridis, Sergios [2 ]
机构
[1] NCSR Demokritos, Inst Informat & Telecommun, Computat Intelligence Lab, Athens 15310, Greece
[2] Univ Athens, Dept Informat, GR-15771 Athens, Greece
关键词
Visual tracking; Particle filter; Sequential Monte-Carlo; PARTICLE; MOTION;
D O I
10.1016/j.imavis.2011.07.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A Hierarchical Model Fusion (HMF) framework for object tracking in video sequences is presented. The Bayesian tracking equations are extended to account for multiple object models. With these equations as a basis a particle filter algorithm is developed to efficiently cope with the multi-modal distributions emerging from cluttered scenes. The update of each object model takes place hierarchically so that the lower dimensional object models, which are updated first, guide the search in the parameter space of the subsequent object models to relevant regions thus reducing the computational complexity. A method for object model adaptation is also developed. We apply the proposed framework by fusing salient points, blobs, and edges as features and verify experimentally its effectiveness in challenging conditions. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:594 / 606
页数:13
相关论文
共 36 条
  • [1] AlacCormick J., 2000, PROCEEDING ECCV, V2, P3, DOI DOI 10.1007/3-540-45053-X1
  • [2] An introduction to MCMC for machine learning
    Andrieu, C
    de Freitas, N
    Doucet, A
    Jordan, MI
    [J]. MACHINE LEARNING, 2003, 50 (1-2) : 5 - 43
  • [3] [Anonymous], 1998, LNCS, DOI DOI 10.1007/BFB0055711
  • [4] [Anonymous], CRGTR931 U TOR
  • [5] [Anonymous], P IEEE INT C IM PROC
  • [6] A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    Arulampalam, MS
    Maskell, S
    Gordon, N
    Clapp, T
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) : 174 - 188
  • [7] Branson K, 2005, PROC CVPR IEEE, P1039
  • [8] On sequential Monte Carlo sampling methods for Bayesian filtering
    Doucet, A
    Godsill, S
    Andrieu, C
    [J]. STATISTICS AND COMPUTING, 2000, 10 (03) : 197 - 208
  • [9] Duffner S., 2009, P BRIT MASCH VIS C
  • [10] Product of Gaussians for speech recognition
    Gales, MJF
    Airey, SS
    [J]. COMPUTER SPEECH AND LANGUAGE, 2006, 20 (01) : 22 - 40