Zonotopic Filtering for Uncertain Nonlinear Systems: Fundamentals, Implementation Aspects, and Extensions [Applications of Control]

被引:8
作者
de Paula, Alesi A. [1 ]
Raffo, Guilherme, V [2 ,3 ]
Teixeira, Bruno O. S. [4 ,5 ]
机构
[1] Univ Fed Minas Gerais, Elect Engn, BR-31270901 Belo Horizonte, MG, Brazil
[2] Univ Fed Santa Catarina, Florianopolis, SC, Brazil
[3] Univ Fed Minas Gerais, BR-31270901 Belo Horizonte, MG, Brazil
[4] Univ Fed Minas Gerais, Dept Elect Engn, BR-31270901 Belo Horizonte, MG, Brazil
[5] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
来源
IEEE CONTROL SYSTEMS MAGAZINE | 2022年 / 42卷 / 01期
基金
巴西圣保罗研究基金会;
关键词
GUARANTEED STATE ESTIMATION; KALMAN FILTER; SET-MEMBERSHIP; IDENTIFICATION; PARADIGMS; ROBUST;
D O I
10.1109/MCS.2021.3122311
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
When the bounds of uncertain variables are known, they can be represented by sets, such as polyhedra, polytopes, zonotopes, constrained zonotopes (CZs), parallelotopes, intervals, strips, and ellipsoids [1]-[4]. These sets are illustrated in Figure 1 for the 2D case. While interval arithmetic defines interval sets [1], [2], affine arithmetic (which is an extension of interval arithmetic) allows for defining more general sets, such as zonotopes [3]. This article focuses on set-based state estimation using interval and zonotopic sets (see "Summary").
引用
收藏
页码:19 / 51
页数:33
相关论文
共 74 条
  • [1] A set-membership state estimation algorithm based on DC programming
    Alamo, T.
    Bravo, J. M.
    Redondo, M. J.
    Camacho, E. F.
    [J]. AUTOMATICA, 2008, 44 (01) : 216 - 224
  • [2] Guaranteed state estimation by zonotopes
    Alamo, T
    Bravo, JM
    Camacho, EF
    [J]. AUTOMATICA, 2005, 41 (06) : 1035 - 1043
  • [3] Alanwar A., 2021, PROC LEARN DYN CONTR, P163
  • [4] Alanwar Amr, 2021, ARXIV
  • [5] Fast zonotope-tube-based LPV-MPC for autonomous vehicles
    Alcala, Eugenio
    Puig, Vicenc
    Quevedo, Joseba
    Sename, Olivier
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (20) : 3676 - 3685
  • [6] Althoff M., 2013, P 16 INT C HYBR SYST, P173
  • [7] Althoff M, 2011, IEEE DECIS CONTR P, P6814, DOI 10.1109/CDC.2011.6160872
  • [8] Computing reachable sets of hybrid systems using a combination of zonotopes and polytopes
    Althoff, Matthias
    Stursberg, Olaf
    Buss, Martin
    [J]. NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2010, 4 (02) : 233 - 249
  • [9] AMPL, CPLEX AMPL
  • [10] AMPL, GUR AMPL