Ion-exchange-induced high-performance of inverse spinel Mg2VO4 for aqueous zinc-ion batteries

被引:20
|
作者
Zhang, Yu [1 ]
Xu, Jing [1 ]
Liu, Chenfan [1 ]
Cheng, Huanhuan [1 ]
Cai, Xuanxuan [1 ]
Jia, Dianzeng [1 ]
Lin, He [1 ]
机构
[1] Xinjiang Univ, Coll Chem, State Key Lab Chem & Utilizat Carbon Based Energy, Urumqi 830017, Xinjiang, Peoples R China
关键词
Ion exchange mechanism; Spinel; Mg2VO4; Aqueous zinc-ion batteries; ELASTIC BAND METHOD; CATHODE MATERIALS; CHEMISTRY; INTERCALATION; ZNMN2O4; ZN;
D O I
10.1016/j.jpowsour.2022.232075
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous zinc-ion batteries (ZIBs) stand out among the next generation of large-scale energy storage devices owing to their overwhelming advantages of high safety, low-cost and environmental benefit. However, this promising technology is still plagued by lack of superior cathode materials due to the inherent slow diffusion kinetics. Herein, with theoretical calculations as a guide, we proposed a new strategy to promote Zn2+ migration based on ion-exchange. Specifically, we first find the tendency of Mg2+ and Zn2+ exchange in inverse-spinel Mg2VO4 by molecular dynamics simulations. Density functional theory (DFT) calculations reveal that this ion exchange can moderate the electrostatic interaction between Zn2+ and host material, and reduce the diffusion energy barrier of Zn2+. Meanwhile, the Mg2+ of host leaves vacancies when it is detached, and both contribute to the improvement of Zn2+ diffusion kinetics. Based on theoretical calculations, we for the first time used a simple sol-gel method to synthesize inverse-spinel Mg2VO4 as an aqueous ZIBs cathode. As predicted in theoretical calculations, after optimization of Zn2+ and Mg2+ exchange, the Mg2VO4/Zn system demonstrates rewarding cyclic stability. This work provides a new insight into the development of cathode materials for high-performance ZIBs.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] V 2 O 3 /VO 2 @NC@GO ultrathin nanosheets as a high-performance cathode for aqueous zinc-ion batteries
    Su, Liping
    Chen, Ji
    Li, Yangjie
    Li, Xiaoying
    Zheng, Qiaoji
    Lin, Dunmin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1002
  • [32] Bifunctional electrolyte additive ammonium persulfate for high-performance aqueous zinc-ion batteries
    Xu, Yuanmei
    Li, Xueshi
    Wang, Xiatong
    Weng, Qijia
    Sun, Weijun
    MATERIALS TODAY SUSTAINABILITY, 2024, 28
  • [33] Cs-Induced Phase Transformation of Vanadium Oxide for High-Performance Zinc-Ion Batteries
    Qu, Gan
    Guo, Kai
    Chen, Weijie
    Du, Yu
    Wang, Ye
    Tian, Bingbing
    Zhang, Jianan
    ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (04)
  • [34] Mn-containing heteropolyvanadate nanoparticles as a high-performance cathode material for aqueous zinc-ion batteries
    Xiao, Haoran
    Li, Rong
    Zhu, Limin
    Chen, Xizhuo
    Xie, Lingling
    Han, Qing
    Qiu, Xuejing
    Yi, Lanhua
    Cao, Xiaoyu
    JOURNAL OF ENERGY STORAGE, 2024, 89
  • [35] High-performance aqueous zinc-ion batteries enabled by graphene electrode modified with multiple redox polymer
    Zhang, Cuihong
    Luo, Yang
    Chang, Shilong
    Wu, Jianping
    Zhang, Peng
    Zhao, Fu-Gang
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2025, 981
  • [36] Multi-Functional Potassium Ion Assists Ammonium Vanadium Oxide Cathode for High-Performance Aqueous Zinc-Ion Batteries
    He, Dan
    Sun, Tianjiang
    Wang, Qiaoran
    Ma, Tao
    Zheng, Shibing
    Tao, Zhanliang
    Liang, Jing
    BATTERIES-BASEL, 2022, 8 (08):
  • [37] Zinc Metal-Free Anode Materials for High-Performance Aqueous Zinc-Ion Batteries: Recent Advances, Mechanisms, Challenges and Perspectives
    Liao, Yanxin
    Yang, Chun
    Bai, Jie
    Sun, Linghao
    Chen, Lingyun
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (47): : 17044 - 17068
  • [38] Rare earth metals ion intercalated hydrated vanadium oxides for high-performance aqueous zinc-ion batteries
    Hu, Bingbing
    Yang, Xinyao
    Li, Dongshan
    Jiang, Jiayu
    Liu, Chenglin
    Deng, Yu
    Pu, Hong
    Ma, Guangqiang
    Li, Zhi
    CERAMICS INTERNATIONAL, 2024, 50 (05) : 8421 - 8428
  • [39] Al-doped α-MnO2 coated by lignin for high-performance rechargeable aqueous zinc-ion batteries
    Xu, Jingliang
    Hu, Xinhang
    Alam, Md Asraful
    Muhammad, Gul
    Lv, Yongkun
    Wang, Minghai
    Zhu, Chenjie
    Xiong, Wenlong
    RSC ADVANCES, 2021, 11 (56) : 35280 - 35286
  • [40] Regulating the kinetics of zinc-ion migration in spinel ZnMn2O4 through iron doping boosted aqueous zinc-ion storage performance
    Chen, Feiran
    Zhang, Yan
    Chen, Shuai
    Zang, Hu
    Liu, Changjiang
    Sun, Hongxia
    Geng, Baoyou
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 649 : 703 - 712