Ion-exchange-induced high-performance of inverse spinel Mg2VO4 for aqueous zinc-ion batteries

被引:20
|
作者
Zhang, Yu [1 ]
Xu, Jing [1 ]
Liu, Chenfan [1 ]
Cheng, Huanhuan [1 ]
Cai, Xuanxuan [1 ]
Jia, Dianzeng [1 ]
Lin, He [1 ]
机构
[1] Xinjiang Univ, Coll Chem, State Key Lab Chem & Utilizat Carbon Based Energy, Urumqi 830017, Xinjiang, Peoples R China
关键词
Ion exchange mechanism; Spinel; Mg2VO4; Aqueous zinc-ion batteries; ELASTIC BAND METHOD; CATHODE MATERIALS; CHEMISTRY; INTERCALATION; ZNMN2O4; ZN;
D O I
10.1016/j.jpowsour.2022.232075
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous zinc-ion batteries (ZIBs) stand out among the next generation of large-scale energy storage devices owing to their overwhelming advantages of high safety, low-cost and environmental benefit. However, this promising technology is still plagued by lack of superior cathode materials due to the inherent slow diffusion kinetics. Herein, with theoretical calculations as a guide, we proposed a new strategy to promote Zn2+ migration based on ion-exchange. Specifically, we first find the tendency of Mg2+ and Zn2+ exchange in inverse-spinel Mg2VO4 by molecular dynamics simulations. Density functional theory (DFT) calculations reveal that this ion exchange can moderate the electrostatic interaction between Zn2+ and host material, and reduce the diffusion energy barrier of Zn2+. Meanwhile, the Mg2+ of host leaves vacancies when it is detached, and both contribute to the improvement of Zn2+ diffusion kinetics. Based on theoretical calculations, we for the first time used a simple sol-gel method to synthesize inverse-spinel Mg2VO4 as an aqueous ZIBs cathode. As predicted in theoretical calculations, after optimization of Zn2+ and Mg2+ exchange, the Mg2VO4/Zn system demonstrates rewarding cyclic stability. This work provides a new insight into the development of cathode materials for high-performance ZIBs.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Dynamic heterostructure design of MnO2 for high-performance aqueous zinc-ion batteries
    Zhao, Xiaoru
    Zhang, Feng
    Li, Houzhen
    Dong, Huitong
    Yan, Chuncheng
    Meng, Chao
    Sang, Yuanhua
    Liu, Hong
    Guo, Yu-Guo
    Wang, Shuhua
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (10) : 3629 - 3640
  • [22] Modification of Zinc Anodes by In Situ ZnO Coating for High-Performance Aqueous Zinc-Ion Batteries
    Zhao, Wen
    Perera, Inosh Prabasha
    Khanna, Harshul S.
    Dang, Yanliu
    Li, Mingxuan
    Posada, Luisa F.
    Tan, Haiyan
    Suib, Steven L.
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (03) : 1172 - 1181
  • [23] Using MXene as a Chemically Induced Initiator to Construct High-Performance Cathodes for Aqueous Zinc-Ion Batteries
    Chen, Jie
    Liu, Yanpeng
    Xiao, Baoquan
    Huang, Juanjuan
    Chen, Hongwei
    Zhu, Kun
    Zhang, Junkai
    Cao, Guozhong
    He, Guanjie
    Ma, Jing
    Peng, Shanglong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (35)
  • [24] Electrospun VO2/carbon fibers for aqueous zinc-ion batteries
    Yin, Liying
    Xu, Zenglong
    Yang, Guangxu
    Guo, Fuhai
    Guo, Wenhui
    Zhao, Songfang
    Yang, Shuhua
    RSC ADVANCES, 2023, 13 (45) : 31667 - 31673
  • [25] Adjusting the Valence State of Vanadium in VO2(B) by Extracting Oxygen Anions for High-Performance Aqueous Zinc-Ion Batteries
    Zhang, Wenwei
    Xiao, Yao
    Zuo, Chunli
    Tang, Wen
    Liu, Gangyuan
    Wang, Shiyu
    Cai, Wanyue
    Dong, Shijie
    Luo, Ping
    CHEMSUSCHEM, 2021, 14 (03) : 971 - 978
  • [26] A quinoxalinophenazinedione covalent triazine framework for boosted high-performance aqueous zinc-ion batteries
    Wang, Yiyun
    Wang, Xinlei
    Tang, Jian
    Tang, Weihua
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (26) : 13868 - 13875
  • [27] Strategies of structural and defect engineering for high-performance rechargeable aqueous zinc-ion batteries
    Du, Min
    Miao, Zhenyu
    Li, Houzhen
    Sang, Yuanhua
    Liu, Hong
    Wang, Shuhua
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (35) : 19245 - 19281
  • [28] Tailoring layered transition metal compounds for high-performance aqueous zinc-ion batteries
    Zong, Quan
    Wu, Yuanzhe
    Liu, Chaofeng
    Wang, Qianqian
    Zhuang, Yanling
    Wang, Jiangying
    Tao, Daiwen
    Zhang, Qilong
    Cao, Guozhong
    ENERGY STORAGE MATERIALS, 2022, 52 : 250 - 283
  • [29] Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries
    Bai, Jiayu
    Hu, Songjie
    Feng, Lirong
    Jin, Xinhui
    Wang, Dong
    Zhang, Kai
    Guo, Xiaohui
    CHINESE CHEMICAL LETTERS, 2024, 35 (09)
  • [30] Bifunctional electrolyte additive ammonium persulfate for high-performance aqueous zinc-ion batteries
    Xu, Yuanmei
    Li, Xueshi
    Wang, Xiatong
    Weng, Qijia
    Sun, Weijun
    MATERIALS TODAY SUSTAINABILITY, 2024, 28