Ion-exchange-induced high-performance of inverse spinel Mg2VO4 for aqueous zinc-ion batteries

被引:20
|
作者
Zhang, Yu [1 ]
Xu, Jing [1 ]
Liu, Chenfan [1 ]
Cheng, Huanhuan [1 ]
Cai, Xuanxuan [1 ]
Jia, Dianzeng [1 ]
Lin, He [1 ]
机构
[1] Xinjiang Univ, Coll Chem, State Key Lab Chem & Utilizat Carbon Based Energy, Urumqi 830017, Xinjiang, Peoples R China
关键词
Ion exchange mechanism; Spinel; Mg2VO4; Aqueous zinc-ion batteries; ELASTIC BAND METHOD; CATHODE MATERIALS; CHEMISTRY; INTERCALATION; ZNMN2O4; ZN;
D O I
10.1016/j.jpowsour.2022.232075
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous zinc-ion batteries (ZIBs) stand out among the next generation of large-scale energy storage devices owing to their overwhelming advantages of high safety, low-cost and environmental benefit. However, this promising technology is still plagued by lack of superior cathode materials due to the inherent slow diffusion kinetics. Herein, with theoretical calculations as a guide, we proposed a new strategy to promote Zn2+ migration based on ion-exchange. Specifically, we first find the tendency of Mg2+ and Zn2+ exchange in inverse-spinel Mg2VO4 by molecular dynamics simulations. Density functional theory (DFT) calculations reveal that this ion exchange can moderate the electrostatic interaction between Zn2+ and host material, and reduce the diffusion energy barrier of Zn2+. Meanwhile, the Mg2+ of host leaves vacancies when it is detached, and both contribute to the improvement of Zn2+ diffusion kinetics. Based on theoretical calculations, we for the first time used a simple sol-gel method to synthesize inverse-spinel Mg2VO4 as an aqueous ZIBs cathode. As predicted in theoretical calculations, after optimization of Zn2+ and Mg2+ exchange, the Mg2VO4/Zn system demonstrates rewarding cyclic stability. This work provides a new insight into the development of cathode materials for high-performance ZIBs.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] An inverse-spinel Mg2MnO4 cathode for high-performance and flexible aqueous zinc-ion batteries
    Yuan, Xuming
    Sun, Tianjiang
    Zheng, Shibing
    Bao, Junquan
    Liang, Jing
    Tao, Zhanliang
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (43) : 22686 - 22693
  • [2] Mg2VO4/VO2 Nanocomposites as Aqueous Zinc Ion Battery Cathodes with High Capacity and High Ion Diffusion Rate
    Yao, Hui
    Yang, Linyu
    Wang, Yujian
    Wang, Jun
    Hu, Yuming
    Wang, Shuying
    Wan, Lingyun
    Li, Haibing
    ACS APPLIED NANO MATERIALS, 2024, 7 (03) : 2903 - 2912
  • [3] Suppressing side reactions in spinel ZnMn2O4 for high-performance aqueous zinc-ion batteries
    Qiu, Ce
    Huang, Heru
    Zhu, Xiaohui
    Xue, Liang
    Ni, Mingzhu
    Zhao, Yang
    Sun, Mingqing
    Wang, Tong
    Wu, Jun
    Xia, Hui
    ENERGY STORAGE MATERIALS, 2025, 75
  • [4] Advanced electrolytes for high-performance aqueous zinc-ion batteries
    Wei, Jie
    Zhang, Pengbo
    Sun, Jingjie
    Liu, Yuzhu
    Li, Fajun
    Xu, Haifeng
    Ye, Ruquan
    Tie, Zuoxiu
    Sun, Lin
    Jin, Zhong
    CHEMICAL SOCIETY REVIEWS, 2024, 53 (20) : 10335 - 10369
  • [5] Carbothermal reduction-induced oxygen vacancies in spinel cathodes for high-performance aqueous zinc-ion batteries
    Bag, Saheb
    Choutipalli, Venkata Surya Kumar
    Bhadra, Abhirup
    Shuford, Kevin L.
    Kundu, Dipan
    Raj, C. Retna
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (34) : 22998 - 23007
  • [6] High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials
    Xuechao Pu
    Baozheng Jiang
    Xianli Wang
    Wenbao Liu
    Liubing Dong
    Feiyu Kang
    Chengjun Xu
    Nano-Micro Letters, 2020, 12
  • [7] High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials
    Pu, Xuechao
    Jiang, Baozheng
    Wang, Xianli
    Liu, Wenbao
    Dong, Liubing
    Kang, Feiyu
    Xu, Chengjun
    NANO-MICRO LETTERS, 2020, 12 (01)
  • [8] High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials
    Xuechao Pu
    Baozheng Jiang
    Xianli Wang
    Wenbao Liu
    Liubing Dong
    Feiyu Kang
    Chengjun Xu
    Nano-Micro Letters, 2020, 12 (11) : 130 - 144
  • [9] Design and Conformation of Separators for High-performance Aqueous Zinc-Ion Batteries
    Niu, Ben
    Luo, Die
    He, Xianru
    Wang, Xin
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (65)
  • [10] Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries
    Liu, Chaofeng
    Neale, Zachary
    Zheng, Jiqi
    Jia, Xiaoxiao
    Huang, Juanjuan
    Yan, Mengyu
    Tian, Meng
    Wang, Mingshan
    Yang, Jihui
    Cao, Guozhong
    ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (07) : 2273 - 2285