Quantifying the generalization capacity of Markov models for melody prediction

被引:3
|
作者
Correa, Debora C. [1 ]
Jungling, Thomas [1 ]
Small, Michael [1 ,2 ]
机构
[1] Univ Western Australia, Dept Math & Stat, Complex Syst Grp, Perth, WA 6009, Australia
[2] CSIRO, Mineral Resources, S Perth, WA 6151, Australia
基金
澳大利亚研究理事会;
关键词
Markov models; Symbolic time series; Time series prediction; MUSIC ANALYSIS; AUTOMATA;
D O I
10.1016/j.physa.2020.124351
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze melodies of classical music by stochastic modeling and prediction, analogous to symbolic time series from a nonlinear dynamical system. The performance in a onestep prediction task indicates the capabilities of the models, given by Markov chains of different orders, to preserve prominent patterns of the compositions. We use cross-prediction between songs within a style, and between songs of different styles, to quantify how well the models can capture similarities between underlying dynamical rules. With this framework, the complexity and individuality of dynamical processes generating classical melodies can be systematically addressed. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] SUBSPACE ESTIMATION AND PREDICTION METHODS FOR HIDDEN MARKOV MODELS
    Andersson, Sofia
    Ryden, Tobias
    ANNALS OF STATISTICS, 2009, 37 (6B): : 4131 - 4152
  • [42] Prediction of Student Actions Using Weighted Markov Models
    Huang, Xiaodi
    Yong, Jianming
    Li, Jiuyong
    Gao, Junbin
    2008 IEEE INTERNATIONAL SYMPOSIUM ON IT IN MEDICINE AND EDUCATION, VOLS 1 AND 2, PROCEEDINGS, 2008, : 154 - +
  • [43] Quantifying Generalization in Reinforcement Learning
    Cobbe, Karl
    Klimov, Oleg
    Hesse, Chris
    Kim, Taehoon
    Schulman, John
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [44] Prediction models and generalization performance study in electrical discharge machining
    Gao, Q.
    Zhang, Q. H.
    Su, S. P.
    Zhang, J. H.
    Ge, R. Y.
    E-ENGINEERING & DIGITAL ENTERPRISE TECHNOLOGY, 2008, 10-12 : 677 - 681
  • [45] A generalization of Markov's inequality
    Eisenberg, B
    Ghosh, BK
    STATISTICS & PROBABILITY LETTERS, 2001, 53 (01) : 59 - 65
  • [46] GENERALIZATION OF MARKOV-PROCESSES
    KLEIN, A
    ANNALS OF PROBABILITY, 1978, 6 (01): : 128 - 132
  • [47] Melody Generation System Based on Generalization by Human Causal Intuition
    Ohmura, Hidefumi
    Shibayama, Takuro
    Takahashi, Tatsuji
    Shibuya, Satoshi
    Okanoya, Kazuo
    Furukawa, Kiyoshi
    2012 PROCEEDINGS OF SICE ANNUAL CONFERENCE (SICE), 2012, : 2005 - 2010
  • [48] Duration Models for Activity Recognition and Prediction in Buildings using Hidden Markov Models
    Ridi, Antonio
    Zarkadis, Nikos
    Gisler, Christophe
    Hennebert, Jean
    PROCEEDINGS OF THE 2015 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (IEEE DSAA 2015), 2015, : 26 - 35
  • [49] COPD classification models and mortality prediction capacity
    Aramburu, Amaia
    Arostegui, Inmaculada
    Moraza, Javier
    Barrio, Irantzu
    Aburto, Myriam
    Garcia-Loizaga, Amaia
    Uranga, Ane
    Zabala, Txomin
    Maria Quintana, Jose
    Esteban, Cristobal
    INTERNATIONAL JOURNAL OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE, 2019, 14 : 605 - 613
  • [50] Markov models - hidden Markov models
    Grewal, Jasleen K.
    Krzywinski, Martin
    Altman, Naomi
    NATURE METHODS, 2019, 16 (09) : 795 - 796