Quantifying the generalization capacity of Markov models for melody prediction

被引:3
|
作者
Correa, Debora C. [1 ]
Jungling, Thomas [1 ]
Small, Michael [1 ,2 ]
机构
[1] Univ Western Australia, Dept Math & Stat, Complex Syst Grp, Perth, WA 6009, Australia
[2] CSIRO, Mineral Resources, S Perth, WA 6151, Australia
基金
澳大利亚研究理事会;
关键词
Markov models; Symbolic time series; Time series prediction; MUSIC ANALYSIS; AUTOMATA;
D O I
10.1016/j.physa.2020.124351
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze melodies of classical music by stochastic modeling and prediction, analogous to symbolic time series from a nonlinear dynamical system. The performance in a onestep prediction task indicates the capabilities of the models, given by Markov chains of different orders, to preserve prominent patterns of the compositions. We use cross-prediction between songs within a style, and between songs of different styles, to quantify how well the models can capture similarities between underlying dynamical rules. With this framework, the complexity and individuality of dynamical processes generating classical melodies can be systematically addressed. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] MIMO channel capacity modeling using Markov models
    Vaihunthan, S
    Haykin, S
    Sellathurai, M
    VTC2005-SPRING: 2005 IEEE 61ST VEHICULAR TECHNOLOGY CONFERENCE, VOLS 1-5, PROCEEDINGS, 2005, : 126 - 130
  • [22] On the Secret Key Capacity of Sibling Hidden Markov Models
    Shoja, Mohammad Reza Khalili
    Amariucai, George T.
    Wang, Zhengdao
    Wei, Shuangqing
    Deng, Jing
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2019, 14 (02) : 514 - 524
  • [23] Generalization of the relaxed constraints models for the prediction of deformation textures
    Van Houtte, P
    Rabet, L
    REVUE DE METALLURGIE-CAHIERS D INFORMATIONS TECHNIQUES, 1997, 94 (12): : 1483 - 1494
  • [24] Surprisal Metrics for Quantifying Perturbed Conformational Dynamics in Markov State Models
    Voelz, Vincent A.
    Elman, Brandon
    Razavi, Asghar M.
    Zhou, Guangfeng
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (12) : 5716 - 5728
  • [25] Quantifying the epistemic uncertainty in ground motion models and prediction
    Foulser-Piggott, R.
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2014, 65 : 256 - 268
  • [26] Regression and Hidden Markov Models for Gold Price Prediction
    Shen, Li
    Shen, Kun
    Yi, Chao
    Chen, Yixin
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 5451 - 5456
  • [27] A computational prediction of isochores based on hidden Markov models
    Melodelima, Christelle
    Gueguen, Laurent
    Piau, Didier
    Gautier, Christian
    GENE, 2006, 385 : 41 - 49
  • [28] Music Sequence Prediction with Mixture Hidden Markov Models
    Li, Tao
    Choi, Minsoo
    Fu, Kaiming
    Lin, Lei
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 6128 - 6132
  • [29] Improved multivariate prediction regions for Markov process models
    Vidoni, Paolo
    STATISTICAL METHODS AND APPLICATIONS, 2017, 26 (01): : 1 - 18
  • [30] Markov chain models for life prediction of composite laminates
    Rowatt, JD
    Spanos, PD
    STRUCTURAL SAFETY, 1998, 20 (02) : 117 - 135