Quantifying the generalization capacity of Markov models for melody prediction

被引:3
|
作者
Correa, Debora C. [1 ]
Jungling, Thomas [1 ]
Small, Michael [1 ,2 ]
机构
[1] Univ Western Australia, Dept Math & Stat, Complex Syst Grp, Perth, WA 6009, Australia
[2] CSIRO, Mineral Resources, S Perth, WA 6151, Australia
基金
澳大利亚研究理事会;
关键词
Markov models; Symbolic time series; Time series prediction; MUSIC ANALYSIS; AUTOMATA;
D O I
10.1016/j.physa.2020.124351
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze melodies of classical music by stochastic modeling and prediction, analogous to symbolic time series from a nonlinear dynamical system. The performance in a onestep prediction task indicates the capabilities of the models, given by Markov chains of different orders, to preserve prominent patterns of the compositions. We use cross-prediction between songs within a style, and between songs of different styles, to quantify how well the models can capture similarities between underlying dynamical rules. With this framework, the complexity and individuality of dynamical processes generating classical melodies can be systematically addressed. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Features for melody spotting using hidden Markov models
    Durey, AS
    Clements, MA
    2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 1765 - 1768
  • [2] OCTAVE GENERALIZATION AND MELODY IDENTIFICATION
    DEUTSCH, D
    PERCEPTION & PSYCHOPHYSICS, 1978, 23 (01): : 91 - 92
  • [3] A method for quantifying the generalization capabilities of generative models for solving Ising models
    Ma, Qunlong
    Ma, Zhi
    Gao, Ming
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (02):
  • [4] ON THE FUNCTION OF OCTAVE GENERALIZATION IN MELODY RECOGNITION
    MAUERHOFER, A
    MUSIKFORSCHUNG, 1981, 34 (03): : 301 - 309
  • [5] Hidden Markov Models for churn prediction
    Rothenbuehler, Pierangelo
    Runge, Julian
    Garcin, Florent
    Faltings, Boi
    2015 SAI INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS), 2015, : 723 - 730
  • [6] Quantifying uncertainty in transdimensional Markov chain Monte Carlo using discrete Markov models
    Heck, Daniel W.
    Overstall, Antony M.
    Gronau, Quentin F.
    Wagenmakers, Eric-Jan
    STATISTICS AND COMPUTING, 2019, 29 (04) : 631 - 643
  • [7] Quantifying uncertainty in transdimensional Markov chain Monte Carlo using discrete Markov models
    Daniel W. Heck
    Antony M. Overstall
    Quentin F. Gronau
    Eric-Jan Wagenmakers
    Statistics and Computing, 2019, 29 : 631 - 643
  • [8] MARKOV RANDOM FIELD MODELS FOR QUANTIFYING UNCERTAINTY IN SUBSURFACE REMEDIATION
    Kaluza, M. Clara De Paolis
    Miller, Eric L.
    Abriola, Linda M.
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4296 - 4299
  • [9] Proteome coverage prediction with infinite Markov models
    Claassen, Manfred
    Aebersold, Ruedi
    Buhmann, Joachim M.
    BIOINFORMATICS, 2009, 25 (12) : I154 - I160
  • [10] Markov Chain Models for Menu Item Prediction
    Lin, Tao
    Xie, Tian-Tian
    Mou, Yi
    Tang, Ning-Jiu
    INTERNATIONAL JOURNAL OF TECHNOLOGY AND HUMAN INTERACTION, 2013, 9 (04) : 75 - 94