The irradiation response of ZrC ceramics under 10 MeV Au3+ ion irradiation at 800 °C

被引:42
作者
Florez, Raul [1 ]
Crespillo, Miguel L. [2 ]
He, Xiaoqing [3 ,4 ]
White, Tommi A. [3 ,5 ]
Hilmas, Gregory [6 ]
Fahrenholtz, William [6 ]
Graham, Joseph [1 ,6 ]
机构
[1] Missouri Univ Sci & Technol, Nucl Engn Program, Rolla, MO 65409 USA
[2] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[3] Univ Missouri, Electron Microscopy Core, Columbia, MO 65211 USA
[4] Univ Missouri, Dept Mech & Aerosp Engn, Columbia, MO 65211 USA
[5] Univ Missouri, Dept Biochem, Columbia, MO 65211 USA
[6] Missouri Univ Sci & Technol, Dept Mat Sci & Engn, Rolla, MO 65409 USA
基金
美国国家科学基金会;
关键词
Ion irradiation; ZrCx; XRD; TEM; Raman; ZIRCONIUM CARBIDE; STRUCTURAL EVOLUTION; PROTON IRRADIATION; DAMAGE; BEHAVIOR; FUEL; MICROSTRUCTURE; TEMPERATURE; CHALLENGES; KINETICS;
D O I
10.1016/j.jeurceramsoc.2020.01.025
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The microstructural evolution was characterized for ZrC ceramics irradiated with 10 MeV Au3+ ions at 800 degrees C. Post-irradiation examination showed that ZrC did not amorphize at doses up to 30 displacement per atoms (dpa). Concurrent oxidation of ZrC was found to occur during ion irradiation. Coarsening of the defective microstructure, as a function of dose, was revealed by transmission electron microscopy analysis. Black dot defects were observed at low doses (0.5 dpa), and tangled dislocation networks were formed at 5 dpa and above. Diffraction analysis showed a change in the defect structure occurred at doses close to similar to 2.5 dpa. The evolution of lattice parameter with dose indicated that uptake of adventitious oxygen could occur in specimens irradiated at high doses. Raman spectroscopy analysis indicated an increase in non-stochiometry after irradiaton. This work identified specific relationships between dose and microstructure after irradiation, revealing the mechanisms of damage production in ZrC ceramics.
引用
收藏
页码:1791 / 1800
页数:10
相关论文
共 62 条
[1]   Helium induced microstructure damage, nano-scale grain formation and helium retention behaviour of ZrC [J].
Agarwal, Shradha ;
Bhattacharya, Arunodaya ;
Trocellier, Patrick ;
Zinkle, Steven J. .
ACTA MATERIALIA, 2019, 163 :14-27
[2]  
[Anonymous], NUCL INSTRUMENTS MET
[3]  
ASTM, 1999, C37314 ASTM
[4]   Structural evolution in ZrC-SiC composite irradiated by 4 MeV Au ions [J].
Bao, Weichao ;
Liu, Ji-Xuan ;
Wang, Xingang ;
Zhang, Hai-Bin ;
Xue, Jiaxiang ;
Sun, Shi-Kuan ;
Xu, Fangfang ;
Xue, Jianming ;
Zhang, Guo-Jun .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2018, 434 :23-28
[5]  
Barnier P., 1986, INT J HIGH TECHNOL C, V2, P291, DOI [DOI 10.1016/0267-3762(86)90022-6, 10.1016/0267-3762(86)90022-6]
[6]   Structural and mechanical properties changes induced in nanocrystalline ZrC thin films by Ar ion irradiation [J].
Craciun, D. ;
Socol, G. ;
Simeone, D. ;
Behdad, S. ;
Boesl, B. ;
Vasile, B. S. ;
Craciun, V. .
JOURNAL OF NUCLEAR MATERIALS, 2016, 468 :78-83
[7]   Temperature measurements during high flux ion beam irradiations [J].
Crespillo, M. L. ;
Graham, J. T. ;
Zhang, Y. ;
Weber, W. J. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (02)
[8]   In-situ luminescence monitoring of ion-induced damage evolution in SiO2 and Al2O3 [J].
Crespillo, M. L. ;
Graham, J. T. ;
Zhang, Y. ;
Weber, W. J. .
JOURNAL OF LUMINESCENCE, 2016, 172 :208-218
[9]   Lattice strain in irradiated materials unveils a prevalent defect evolution mechanism [J].
Debelle, Aurelien ;
Crocombette, Jean-Paul ;
Boulle, Alexandre ;
Chartier, Alain ;
Jourdan, Thomas ;
Pellegrino, Stephanie ;
Bachiller-Perea, Diana ;
Carpentier, Denise ;
Channagiri, Jayanth ;
Tien-Hien Nguyen ;
Garrido, Frederico ;
Thome, Lionel .
PHYSICAL REVIEW MATERIALS, 2018, 2 (01)
[10]  
Florez R., 2019, THESIS, V2821, P60