Robust estimation via robust gradient estimation

被引:48
作者
Prasad, Adarsh [1 ]
Suggala, Arun Sai [1 ]
Balakrishnan, Sivaraman [1 ]
Ravikumar, Pradeep [1 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
Heavy tails; Huber contamination; Outliers; Robust gradients; Robustness; HIGH DIMENSIONS;
D O I
10.1111/rssb.12364
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide a new computationally efficient class of estimators for risk minimization. We show that these estimators are robust for general statistical models, under varied robustness settings, including in the classical Huber epsilon-contamination model, and in heavy-tailed settings. Our workhorse is a novel robust variant of gradient descent, and we provide conditions under which our gradient descent variant provides accurate estimators in a general convex risk minimization problem. We provide specific consequences of our theory for linear regression and logistic regression and for canonical parameter estimation in an exponential family. These results provide some of the first computationally tractable and provably robust estimators for these canonical statistical models. Finally, we study the empirical performance of our proposed methods on synthetic and real data sets, and we find that our methods convincingly outperform a variety of baselines.
引用
收藏
页码:601 / 627
页数:27
相关论文
共 50 条
[31]   Robust estimation for the Cox regression model based on trimming [J].
Farcomeni, Alessio ;
Viviani, Sara .
BIOMETRICAL JOURNAL, 2011, 53 (06) :956-973
[32]   Robust estimation and design procedures for the random effects model [J].
Zhou, J ;
Zhu, HT .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2003, 31 (01) :99-110
[33]   Robust Estimation for Zero-Inflated Poisson Regression [J].
Hall, Daniel B. ;
Shen, Jing .
SCANDINAVIAN JOURNAL OF STATISTICS, 2010, 37 (02) :237-252
[34]   A Comparison of two Robust Estimation Methods for Business Surveys [J].
Clark, Robert Graham ;
Kokic, Philip ;
Smith, Paul A. .
INTERNATIONAL STATISTICAL REVIEW, 2017, 85 (02) :270-289
[35]   Robust estimation in the normal mixture model [J].
Fujisawa, Hironori ;
Eguchi, Shinto .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 136 (11) :3989-4011
[36]   Output outlier robust state estimation [J].
De Palma, Daniela ;
Indiveri, Giovanni .
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2017, 31 (04) :581-607
[37]   Highly robust estimation of dispersion matrices [J].
Ma, YY ;
Genton, MG .
JOURNAL OF MULTIVARIATE ANALYSIS, 2001, 78 (01) :11-36
[38]   Robust estimation of a harmonic signal frequency [J].
Chyrka, Y. D. ;
Omelchuk, I. P. ;
Prokopenko, I. G. .
2014 15TH INTERNATIONAL RADAR SYMPOSIUM (IRS), 2014,
[39]   Tractable Algorithms for Robust Model Estimation [J].
Olof Enqvist ;
Erik Ask ;
Fredrik Kahl ;
Kalle Åström .
International Journal of Computer Vision, 2015, 112 :115-129
[40]   Robust estimation of models of Engel curves [J].
Jiazhong You .
Empirical Economics, 2003, 28 (1) :61-73