Robust estimation via robust gradient estimation

被引:48
作者
Prasad, Adarsh [1 ]
Suggala, Arun Sai [1 ]
Balakrishnan, Sivaraman [1 ]
Ravikumar, Pradeep [1 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
Heavy tails; Huber contamination; Outliers; Robust gradients; Robustness; HIGH DIMENSIONS;
D O I
10.1111/rssb.12364
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide a new computationally efficient class of estimators for risk minimization. We show that these estimators are robust for general statistical models, under varied robustness settings, including in the classical Huber epsilon-contamination model, and in heavy-tailed settings. Our workhorse is a novel robust variant of gradient descent, and we provide conditions under which our gradient descent variant provides accurate estimators in a general convex risk minimization problem. We provide specific consequences of our theory for linear regression and logistic regression and for canonical parameter estimation in an exponential family. These results provide some of the first computationally tractable and provably robust estimators for these canonical statistical models. Finally, we study the empirical performance of our proposed methods on synthetic and real data sets, and we find that our methods convincingly outperform a variety of baselines.
引用
收藏
页码:601 / 627
页数:27
相关论文
共 50 条
[21]   A NEW ROBUST ESTIMATION METHOD FOR ARMA MODELS [J].
Chakhchoukh, Yacine ;
Panciatici, Patrick ;
Bondon, Pascal ;
Mili, Lamine .
2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, :3321-+
[22]   ROBUST STATE ESTIMATION FUSION IN POWER SYSTEM [J].
Nguyen, Nga-Viet ;
Shevlyakov, Georgy ;
Shin, Vladimir .
INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2010, 6 (12) :5771-5784
[23]   Bootstrap estimation of the proportion of outliers in robust regression [J].
Heng, Qiang ;
Lange, Kenneth .
STATISTICS AND COMPUTING, 2025, 35 (01)
[24]   Bounded Influence Propagation τ-Estimation: A New Robust Method for ARMA Model Estimation [J].
Muma, Michael ;
Zoubir, Abdelhak M. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (07) :1712-1727
[25]   Robust Estimation in Controlled Branching Processes: Bayesian Estimators via Disparities* [J].
Gonzalez, Miguel ;
Minuesa, Carmen ;
del Puerto, Ines ;
Vidyashankar, Anand N. .
BAYESIAN ANALYSIS, 2021, 16 (03) :1009-1037
[26]   Robust DOA Estimation via Sparse Signal Reconstruction With Impulsive Noise [J].
Hu, Rui ;
Fu, Yuli ;
Chen, Zhen ;
Xu, Junwei ;
Tang, Jie .
IEEE COMMUNICATIONS LETTERS, 2017, 21 (06) :1333-1336
[27]   A robust method for instantaneous frequency estimation via inverse spectral decomposition [J].
Geng, Weiheng ;
Chen, Xiaohong ;
Li, Jingye ;
Wu, Fan ;
Tang, Wei ;
Zhou, Chunlei ;
Ye, Wei .
JOURNAL OF APPLIED GEOPHYSICS, 2022, 206
[28]   Robust estimation of mixtures of regressions with random covariates, via trimming and constraints [J].
L. A. García-Escudero ;
A. Gordaliza ;
F. Greselin ;
S. Ingrassia ;
A. Mayo-Iscar .
Statistics and Computing, 2017, 27 :377-402
[29]   Robust estimation of mixtures of regressions with random covariates, via trimming and constraints [J].
Garcia-Escudero, L. A. ;
Gordaliza, A. ;
Greselin, F. ;
Ingrassia, S. ;
Mayo-Iscar, A. .
STATISTICS AND COMPUTING, 2017, 27 (02) :377-402
[30]   Robust DOA Estimation Against Outliers via Joint Sparse Representation [J].
Xiao, Wudang ;
Li, Yingsong ;
Zhao, Luyu ;
de Lamare, Rodrigo C. .
IEEE SIGNAL PROCESSING LETTERS, 2024, 31 :2015-2019