Clocked atom delivery to a photonic crystal waveguide

被引:34
作者
Burgers, A. P. [1 ]
Peng, L. S. [1 ]
Muniz, J. A. [1 ,2 ]
McClung, A. C. [1 ,3 ]
Martin, M. J. [1 ,4 ]
Kimble, H. J. [1 ]
机构
[1] CALTECH, Norman Bridge Lab Phys, Pasadena, CA 91125 USA
[2] Univ Colorado, JILA, Boulder, CO 80309 USA
[3] Univ Massachusetts Amherst, Dept Elect & Comp Engn, Amherst, MA 01003 USA
[4] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA
基金
美国国家科学基金会;
关键词
nanophotonics; atoms; quantum optics; surface forces; QUANTUM; SURFACE;
D O I
10.1073/pnas.1817249115
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Experiments and numerical simulations are described that develop quantitative understanding of atomic motion near the surfaces of nanoscopic photonic crystal waveguides (PCWs). Ultra-cold atoms are delivered from a moving optical lattice into the PCW. Synchronous with the moving lattice, transmission spectra for a guided-mode probe field are recorded as functions of lattice transport time and frequency detuning of the probe beam. By way of measurements such as these, we have been able to validate quantitatively our numerical simulations, which are based upon detailed understanding of atomic trajectories that pass around and through nanoscopic regions of the PCW under the influence of optical and surface forces. The resolution for mapping atomic motion is roughly 50 nm in space and 100 ns in time. By introducing auxiliary guided-mode (GM) fields that provide spatially varying AC Stark shifts, we have, to some degree, begun to control atomic trajectories, such as to enhance the flux into the central vacuum gap of the PCW at predetermined times and with known AC Stark shifts. Applications of these capabilities include enabling high fractional filling of optical trap sites within PCWs, calibration of optical fields within PCWs, and utilization of the time-dependent, optically dense atomic medium for novel nonlinear optical experiments.
引用
收藏
页码:456 / 465
页数:10
相关论文
共 57 条
[1]  
Alton DJ, 2011, NAT PHYS, V7, P159, DOI [10.1038/nphys1837, 10.1038/NPHYS1837]
[2]   Exponential Improvement in Photon Storage Fidelities Using Subradiance and "Selective Radiance" in Atomic Arrays [J].
Asenjo-Garcia, A. ;
Moreno-Cardoner, M. ;
Albrecht, A. ;
Kimble, H. J. ;
Chang, D. E. .
PHYSICAL REVIEW X, 2017, 7 (03)
[3]   Atom-light interactions in quasi-one-dimensional nanostructures: A Green's-function perspective [J].
Asenjo-Garcia, A. ;
Hood, J. D. ;
Chang, D. E. ;
Kimble, H. J. .
PHYSICAL REVIEW A, 2017, 95 (03)
[4]   Single-photon cooling at the limit of trap dynamics: Maxwell's demon near maximum efficiency [J].
Bannerman, S. Travis ;
Price, Gabriel N. ;
Viering, Kirsten ;
Raizen, Mark G. .
NEW JOURNAL OF PHYSICS, 2009, 11
[5]   Generation and Detection of a Sub-Poissonian Atom Number Distribution in a One-Dimensional Optical Lattice [J].
Beguin, J. -B. ;
Bookjans, E. M. ;
Christensen, S. L. ;
Sorensen, H. L. ;
Mueller, J. H. ;
Polzik, E. S. ;
Appel, J. .
PHYSICAL REVIEW LETTERS, 2014, 113 (26)
[6]   Probing Atom-Surface Interactions by Diffraction of Bose-Einstein Condensates [J].
Bender, Helmar ;
Stehle, Christian ;
Zimmermann, Claus ;
Slama, Sebastian ;
Fiedler, Johannes ;
Scheel, Stefan ;
Buhmann, Stefan Yoshi ;
Marachevsky, Valery N. .
PHYSICAL REVIEW X, 2014, 4 (01)
[7]   Atom-wall interaction [J].
Bloch, D ;
Ducloy, M .
ADVANCES IN ATOMIC, MOLECULAR, AND OPTICAL PHYSICS, VOL 50, 2005, 50 :91-154
[8]   Colloquium: Quantum matter built from nanoscopic lattices of atoms and photons [J].
Chang, D. E. ;
Douglas, J. S. ;
Gonzalez-Tudela, A. ;
Hung, C. -L. ;
Kimble, H. J. .
REVIEWS OF MODERN PHYSICS, 2018, 90 (03)
[9]   Cavity QED with atomic mirrors [J].
Chang, D. E. ;
Jiang, L. ;
Gorshkov, A. V. ;
Kimble, H. J. .
NEW JOURNAL OF PHYSICS, 2012, 14
[10]   VANDERWAALS-INDUCED SPECTRAL DISTORTIONS IN SELECTIVE-REFLECTION SPECTROSCOPY OF CS VAPOR - THE STRONG ATOM SURFACE INTERACTION REGIME [J].
CHEVROLLIER, M ;
BLOCH, D ;
RAHMAT, G ;
DUCLOY, M .
OPTICS LETTERS, 1991, 16 (23) :1879-1881