QUANTUM SECURE DIRECT COMMUNICATION WITH A CONSTANT NUMBER OF EPR PAIRS

被引:6
作者
Lu, Chin-Yung [1 ]
Wang, Shiou-An [2 ]
Cheng, Yuh-Jiuh [3 ]
Kuo, Sy-Yen [4 ,5 ]
机构
[1] Delin Inst Technol, Dept Elect Engn, Taipei Cty 23656, Taiwan
[2] Delin Inst Technol, Dept Comp Sci & Informat Engn, Taipei Cty 23656, Taiwan
[3] Chunghwa Telecommun Labs, Tao Yuan 32601, Taiwan
[4] Natl Taiwan Univ, Grad Inst Elect Engn, Dept Elect Engn, Taipei 10617, Taiwan
[5] Natl Taiwan Univ, Ctr Quantum Sci & Engn, Taipei 10617, Taiwan
关键词
Entanglement swapping; authentication; data communications; security; CRYPTOGRAPHY;
D O I
10.1142/S0219749910006277
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we propose a quantum secure direct communication (QSDC) protocol based on Einstein-Podolsky-Rosen (EPR) pairs. Previous QSDC protocols usually consume one EPR pair to transmit a single qubit. If Alice wants to transmit an n-bit message, she needs at least n/2 EPR pairs when a dense coding scheme is used. In our protocol, if both Alice and Bob preshare 2c + 1 EPR pairs with the trusted server, where c is a constant, Alice can transmit an arbitrary number of qubits to Bob. The 2c EPR pairs are used by Alice and Bob to authenticate each other and the remaining EPR pair is used to encode and decode the message qubit. Thus the total number of EPR pairs used for one communication is a constant no matter how many bits will be transmitted. It is not necessary to transmit EPR pairs before transmitting the secret message except for the preshared constant number of EPR pairs. This reduces both the utilization of the quantum channel and the risk. In addition, after the authentication, the server is not involved in the message transmission. Thus we can prevent the server from knowing the message.
引用
收藏
页码:1355 / 1371
页数:17
相关论文
共 21 条
  • [1] Secure communication with a publicly known key
    Beige, A
    Englert, BG
    Kurtsiefer, C
    Weinfurter, H
    [J]. ACTA PHYSICA POLONICA A, 2002, 101 (03) : 357 - 368
  • [2] Bennett C. H., 2014, Theoretical computer science, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
  • [3] QUANTUM CRYPTOGRAPHY - UNCERTAINTY IN THE SERVICE OF PRIVACY
    BENNETT, CH
    [J]. SCIENCE, 1992, 257 (5071) : 752 - 753
  • [4] QUANTUM CRYPTOGRAPHY WITHOUT BELL THEOREM
    BENNETT, CH
    BRASSARD, G
    MERMIN, ND
    [J]. PHYSICAL REVIEW LETTERS, 1992, 68 (05) : 557 - 559
  • [5] Deterministic secure direct communication using entanglement -: art. no. 187902
    Boström, K
    Felbinger, T
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (18) : 187902/1 - 187902/4
  • [6] Quantum key distribution without alternative measurements
    Cabello, A
    [J]. PHYSICAL REVIEW A, 2000, 61 (05):
  • [7] Secure direct communication with a quantum one-time pad
    Deng, FG
    Long, GL
    [J]. PHYSICAL REVIEW A, 2004, 69 (05): : 052319 - 1
  • [8] Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block
    Deng, FG
    Long, GL
    Liu, XS
    [J]. PHYSICAL REVIEW A, 2003, 68 (04): : 6
  • [9] Quantum secure direct communication network with Einstein-Podolsky-Rosen pairs
    Deng, Fu-Guo
    Li, Xi-Han
    Li, Chun-Yan
    Zhou, Ping
    Zhou, Hong-Yu
    [J]. PHYSICS LETTERS A, 2006, 359 (05) : 359 - 365
  • [10] Quantum secure conditional direct communication via EPR pairs
    Gao, T
    Yan, FL
    Wang, ZX
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2005, 16 (08): : 1293 - 1301