Convergence of nonlinear finite volume schemes for two-phase porous media flow on general meshes

被引:3
作者
Agelas, Leo [1 ]
Schneider, Martin [2 ]
Enchery, Guillaume [1 ]
Flemisch, Bernd [2 ]
机构
[1] IFP Energies Nouvelles, 1&4 Ave Bois Preau, F-92852 Rueil Malmaison, France
[2] Univ Stuttgart, Inst Modelling Hydraul & Environm Syst, Pfaffenwaldring 61, D-70569 Stuttgart, Germany
关键词
two-phase flow; porous medium; monotone schemes; finite volume methods; convergence analysis; HETEROGENEOUS ANISOTROPIC DIFFUSION; EQUATIONS;
D O I
10.1093/imanum/draa064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we present an abstract finite volume discretization framework for incompressible immiscible two-phase flow through porous media. A priori error estimates are derived that allow us to prove the existence of discrete solutions and to establish the proof of convergence for schemes belonging to this framework. In contrast to existing publications the proof is not restricted to a specific scheme and it assumes neither symmetry nor linearity of the flux approximations. Two nonlinear schemes, namely a nonlinear two-point flux approximation and a nonlinear multipoint flux approximation, are presented, and some properties of these schemes, e.g. saturation bounds, are proven. Furthermore, the numerical behavior of these schemes (e.g. accuracy, coercivity, efficiency or saturation bounds) is investigated for different test cases for which the coercivity is checked numerically.
引用
收藏
页码:515 / 568
页数:54
相关论文
共 40 条
[1]  
Agelas L., 2010, INT J FINITE, V7, P1
[2]   THE G METHOD FOR HETEROGENEOUS ANISOTROPIC DIFFUSION ON GENERAL MESHES [J].
Agelas, Leo ;
Di Pietro, Daniele A. ;
Droniou, Jerome .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2010, 44 (04) :597-625
[3]  
Alkamper M., 2016, Arch. Numer. Softw, V4, P1, DOI DOI 10.11588/ANS.2016.1.23252
[4]   A finite volume method on general meshes for a degenerate parabolic convection-reaction-diffusion equation [J].
Angelini, Ophelie ;
Brenner, Konstantin ;
Hilhorst, Danielle .
NUMERISCHE MATHEMATIK, 2013, 123 (02) :219-257
[5]  
[Anonymous], 2013, Int. J. Finite
[6]  
Blatt M., 2016, ARCHIVE NUMERICAL SO, V4, P13, DOI DOI 10.11588/ANS.2016.100.26526
[7]  
Blatt M, 2007, LECT NOTES COMPUT SC, V4699, P666
[8]   UPSTREAM DIFFERENCING FOR MULTIPHASE FLOW IN RESERVOIR SIMULATION [J].
BRENIER, Y ;
JAFFRE, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (03) :685-696
[9]  
Brooks R.H., 1965, Hydraulic Properties of Porous Media
[10]   Degenerate two-phase incompressible flow I. Existence, uniqueness and regularity of a weak solution [J].
Chen, ZX .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 171 (02) :203-232