Active Learning Improves Performance on Symbolic Regression Tasks in StackGP

被引:2
作者
Haut, Nathan [1 ]
Banzhaf, Wolfgang [1 ]
Punch, Bill [1 ]
机构
[1] Michigan State Univ, E Lansing, MI 48824 USA
来源
PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022 | 2022年
关键词
active learning; symbolic regression; genetic programming;
D O I
10.1145/3520304.3528941
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces an active learning method for symbolic regression using StackGP. The approach begins with a small number of data points for StackGP to model. To improve the model the system incrementally adds the data point characterized by maximizing prediction uncertainty as measured by the model ensemble. Symbolic regression is re-run with the larger data set. This cycle continues until the system satisfies a termination criterion. The Feynman AI benchmark set of equations is used to examine the ability of the method to find appropriate models using as few data points as possible. The approach successfully rediscovered 72 of the 100 Feynman equations without the use of domain expertise or data translation.
引用
收藏
页码:550 / 553
页数:4
相关论文
共 50 条
[31]   Learning dynamics from coarse/noisy data with scalable symbolic regression [J].
Chen, Zhao ;
Wang, Nan .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 190
[32]   Learning Relevant Models using Symbolic Regression for Automatic Text Summarization [J].
Vazquez, Eder ;
Ledeneva, Yulia ;
Arnulfo Garcia-Hernandez, Rene .
COMPUTACION Y SISTEMAS, 2019, 23 (01) :127-141
[33]   Symbolic Regression Based Extreme Learning Machine Models for System Identification [J].
Başak Esin Köktürk-Güzel ;
Selami Beyhan .
Neural Processing Letters, 2021, 53 :1565-1578
[34]   Deep Active Learning for Address Parsing Tasks with BERT [J].
Guler, Berkay ;
Aygun, Betul ;
Gerek, Aydin ;
Gurel, Alaeddin Selcuk .
2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
[35]   Regression tree-based active learning [J].
Jose, Ashna ;
de Mendonca, Joao Paulo Almeida ;
Devijver, Emilie ;
Jakse, Noel ;
Monbet, Valerie ;
Poloni, Roberta .
DATA MINING AND KNOWLEDGE DISCOVERY, 2024, 38 (02) :420-460
[36]   Regression tree-based active learning [J].
Ashna Jose ;
João Paulo Almeida de Mendonça ;
Emilie Devijver ;
Noël Jakse ;
Valérie Monbet ;
Roberta Poloni .
Data Mining and Knowledge Discovery, 2024, 38 :420-460
[37]   Active regression learning method for material data [J].
Zhang H. ;
Qian Q. ;
Wu X. .
Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2023, 45 (07) :1232-1237
[38]   A benchmark and comparison of active learning for logistic regression [J].
Yang, Yazhou ;
Loog, Marco .
PATTERN RECOGNITION, 2018, 83 :401-415
[39]   Active learning for regression using greedy sampling [J].
Wu, Dongrui ;
Lin, Chin-Teng ;
Huang, Jian .
INFORMATION SCIENCES, 2019, 474 :90-105
[40]   Active Learning with Multiple Localized Regression Models [J].
Deodhar, Meghana ;
Ghosh, Joydeep ;
Saar-Tsechansky, Maytal ;
Keshari, Vineet .
INFORMS JOURNAL ON COMPUTING, 2017, 29 (03) :503-522