Active Learning Improves Performance on Symbolic Regression Tasks in StackGP

被引:2
作者
Haut, Nathan [1 ]
Banzhaf, Wolfgang [1 ]
Punch, Bill [1 ]
机构
[1] Michigan State Univ, E Lansing, MI 48824 USA
来源
PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022 | 2022年
关键词
active learning; symbolic regression; genetic programming;
D O I
10.1145/3520304.3528941
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces an active learning method for symbolic regression using StackGP. The approach begins with a small number of data points for StackGP to model. To improve the model the system incrementally adds the data point characterized by maximizing prediction uncertainty as measured by the model ensemble. Symbolic regression is re-run with the larger data set. This cycle continues until the system satisfies a termination criterion. The Feynman AI benchmark set of equations is used to examine the ability of the method to find appropriate models using as few data points as possible. The approach successfully rediscovered 72 of the 100 Feynman equations without the use of domain expertise or data translation.
引用
收藏
页码:550 / 553
页数:4
相关论文
共 50 条
[21]   Learning pharmacometric covariate model structures with symbolic regression networks [J].
Wahlquist, Ylva ;
Sundell, Jesper ;
Soltesz, Kristian .
JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2024, 51 (02) :155-167
[22]   Machine learning and symbolic regression investigation on stability of MXene materials [J].
He, Mu ;
Zhang, Lei .
COMPUTATIONAL MATERIALS SCIENCE, 2021, 196
[23]   Active learning for logistic regression: an evaluation [J].
Andrew I. Schein ;
Lyle H. Ungar .
Machine Learning, 2007, 68 :235-265
[24]   Active learning for logistic regression: an evaluation [J].
Schein, Andrew I. ;
Ungar, Lyle H. .
MACHINE LEARNING, 2007, 68 (03) :235-265
[25]   Active Learning for Imbalanced Ordinal Regression [J].
Ge, Jiaming ;
Chen, Haiyan ;
Zhang, Dongfang ;
Hou, Xiaye ;
Yuan, Ligang .
IEEE ACCESS, 2020, 8 (08) :180608-180617
[26]   Active learning for spectroscopic data regression [J].
Douak, Fouzi ;
Melgani, Farid ;
Alajlan, Naif ;
Pasolli, Edoardo ;
Bazi, Yakoub ;
Benoudjit, Nabil .
JOURNAL OF CHEMOMETRICS, 2012, 26 (07) :374-383
[27]   An Analysis of the Ingredients for Learning Interpretable Symbolic Regression Models with Human-in-The-loop and Genetic Programming [J].
Nadizar G. ;
Rovito L. ;
De Lorenzo A. ;
Medvet E. ;
Virgolin M. .
ACM Transactions on Evolutionary Learning and Optimization, 2024, 4 (01)
[28]   Impact of the Characteristics of Multi-source Entity Matching Tasks on the Performance of Active Learning Methods [J].
Primpeli, Anna ;
Bizer, Christian .
SEMANTIC WEB, ESWC 2022, 2022, 13261 :113-129
[29]   Selecting Informative Data Samples for Model Learning Through Symbolic Regression [J].
Derner, Erik ;
Kubalik, Jiri ;
Babuska, Robert .
IEEE ACCESS, 2021, 9 :14148-14158
[30]   Symbolic Regression Based Extreme Learning Machine Models for System Identification [J].
Kokturk-Guzel, Basak Esin ;
Beyhan, Selami .
NEURAL PROCESSING LETTERS, 2021, 53 (02) :1565-1578