Numerical Analysis of a Dynamic Contact Problem with History-Dependent Operators

被引:19
作者
Xuan, Hailing [1 ]
Cheng, Xiaoliang [1 ]
Han, Weimin [2 ]
Xiao, Qichang [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
关键词
Variational-hemivariational inequality; history-dependent operators; finite element method; numerical approximation; optimal order error estimate; INEQUALITIES;
D O I
10.4208/nmtma.OA-2019-0130
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a dynamic contact model with long memory which allows both the convex potential and nonconvex superpotentials to depend on history-dependent operators. The deformable body consists of a viscoelastic material with long memory and the process is assumed to be dynamic. The contact involves a nonmonotone Clarke subdifferential boundary condition and the friction is modeled by a version of the Coulomb's law of dry friction with the friction bound depending on the total slip. We introduce and study a fully discrete scheme of the problem, and derive error estimates for numerical solutions. Under appropriate solution regularity assumptions, an optimal order error estimate is derived for the linear finite element method. This theoretical result is illustrated numerically.
引用
收藏
页码:569 / 594
页数:26
相关论文
共 26 条
  • [1] [Anonymous], EUROPEAN J APPL MATH
  • [2] [Anonymous], 1981, Numerical Analysis of Variational Inequalities
  • [3] Atkinson K, 2009, Theoretical Numerical Analysis: A Functional Analysis Framework, V3rd
  • [4] Baiocchi C., 1984, VARIATIONAL QUASIVAR
  • [5] NUMERICAL ANALYSIS OF A HYPERBOLIC HEMIVARIATIONAL INEQUALITY ARISING IN DYNAMIC CONTACT
    Barboteu, Mikael
    Bartosz, Krzysztof
    Han, Weimin
    Janiczko, Tomasz
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) : 527 - 550
  • [6] Rothe method for parabolic variational hemivariational inequalities
    Bartosz, Krzysztof
    Cheng, Xiaoliang
    Kalita, Piotr
    Yu, Yuanjie
    Zheng, Cong
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (02) : 841 - 862
  • [7] Brenner S.C., 2008, TEXTS APPL MATH, V15
  • [8] Error estimate for quasistatic history-dependent contact model
    Cheng, Xiaoliang
    Xiao, Qichang
    Migorski, Stanislaw
    Ochal, Anna
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (11) : 2943 - 2952
  • [9] ANALYSIS OF TWO QUASISTATIC HISTORY-DEPENDENT CONTACT MODELS
    Cheng, Xiaoliang
    Migorski, Stanislaw
    Ochal, Anna
    Sofonea, Mircea
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (08): : 2425 - 2445
  • [10] CIARLET P. G., 1978, Stud. Math. Appl., V4