SENSITIVITY TO BASIS MISMATCH IN COMPRESSED SENSING

被引:32
作者
Chi, Yuejie [1 ]
Pezeshki, Ali [2 ]
Scharf, Louis [2 ]
Calderbank, Robert [3 ]
机构
[1] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[2] Colorado State Univ, Dept Elect & Comp Engn, Dept Stat, Ft Collins, CO 80523 USA
[3] Duke Univ, Dept Comp Sci, Durham, NC 27706 USA
来源
2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING | 2010年
关键词
Compressed sensing; image inversion; image reconstruction; sensitivity to basis mismatch; sparse recovery;
D O I
10.1109/ICASSP.2010.5495800
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Compressed sensing theory suggests that successful inversion of an image of the physical world from its modal parameters can be achieved at measurement dimensions far lower than the image dimension, provided that the image is sparse in an a priori known basis. The assumed basis for sparsity typically corresponds to a gridding of the parameter space, e. g., an DFT grid in spectrum analysis. However, in reality no physical field is sparse in the DFT basis or in an a priori known basis. No matter how finely we grid the parameter space the sources may not lie in the center of the grid cells and there is always mismatch between the assumed and the actual bases for sparsity. In this paper, we study the sensitivity of compressed sensing (basis pursuit to be exact) to mismatch between the assumed and the actual sparsity bases. Our mathematical analysis and numerical examples show that the performance of basis pursuit degrades considerably in the presence of basis mismatch.
引用
收藏
页码:3930 / 3933
页数:4
相关论文
共 10 条
[1]   IEEE-SPS and connexions - An open access education collaboration [J].
Baraniuk, Richard G. ;
Burrus, C. Sidney ;
Thierstein, E. Joel .
IEEE SIGNAL PROCESSING MAGAZINE, 2007, 24 (06) :6-+
[2]  
Candes E. J., 2006, P INT C MATH MADR SP, V3, P1433, DOI DOI 10.4171/022-3/69
[3]   Decoding by linear programming [J].
Candes, EJ ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4203-4215
[4]   The restricted isometry property and its implications for compressed sensing [J].
Candes, Emmanuel J. .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (9-10) :589-592
[5]  
Chi Y., 2009, SENSITIVITY BASIS MI
[6]  
Chi Y., 2009, 2009 WORKSH DEF APPL
[7]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[8]   A compressive beamforming method [J].
Guerbuez, Ali Cafer ;
McClellan, James H. ;
Cevher, Volkan .
2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, :2617-+
[9]  
Herman M. A., GEN DEVIANTS ANAL PE
[10]  
Herman M. A., 2009, IEEE T SIGN IN PRESS