In vivo somatic cell base editing and prime editing

被引:120
作者
Newby, Gregory A. [1 ,2 ,3 ]
Liu, David R. [1 ,2 ,3 ]
机构
[1] Broad Inst Harvard & MIT, Merkin Inst Transformat Technol Healthcare, Cambridge, MA 02142 USA
[2] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[3] Harvard Univ, Howard Hughes Med Inst, Cambridge, MA 02142 USA
基金
美国国家卫生研究院;
关键词
DOUBLE-STRAND BREAKS; GENE DELIVERY; MOUSE MODEL; HOMOLOGOUS RECOMBINATION; ADENOASSOCIATED VIRUS; GENOMIC DNA; STEM-CELLS; CRISPR; REPAIR; LIVER;
D O I
10.1016/j.ymthe.2021.09.002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Recent advances in genome editing technologies have magnified the prospect of single-dose cures for many genetic diseases. For most genetic disorders, precise DNA correction is anticipated to best treat patients. To install desired DNA changes with high precision, our laboratory developed base editors (BEs), which can correct the four most common single-base substitutions, and prime editors, which can install any substitution, insertion, and/or deletion over a stretch of dozens of base pairs. Compared to nuclease-dependent editing approaches that involve double-strand DNA breaks (DSBs) and often result in a large percentage of uncontrolled editing outcomes, such as mixtures of insertions and deletions (indels), larger deletions, and chromosomal rearrangements, base editors and prime editors often offer greater efficiency with fewer byproducts in slowly dividing or non-dividing cells, such as those that make up most of the cells in adult animals. Both viral and non-viral in vivo delivery methods have now been used to deliver base editors and prime editors in animal models, establishing that base editors and prime editors can serve as effective agents for in vivo therapeutic genome editing in animals. This review summarizes examples of in vivo somatic cell (post-natal) base editing and prime editing and prospects for future development.
引用
收藏
页码:3107 / 3124
页数:18
相关论文
共 208 条
[1]   Frequent loss of heterozygosity in CRISPR-Cas9-edited early human embryos [J].
Alanis-Lobato, Gregorio ;
Zohren, Jasmin ;
McCarthy, Afshan ;
Fogarty, Norah M. E. ;
Kubikova, Nada ;
Hardman, Emily ;
Greco, Maria ;
Wells, Dagan ;
Turner, James M. A. ;
Niakan, Kathy K. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (22)
[2]   Predicting the mutations generated by repair of Cas9-induced double-strand breaks [J].
Allen, Felicity ;
Crepaldi, Luca ;
Alsinet, Clara ;
Strong, Alexander J. ;
Kleshchevnikov, Vitalii ;
De Angeli, Pietro ;
Palenikova, Petra ;
Khodak, Anton ;
Kiselev, Vladimir ;
Kosicki, Michael ;
Bassett, Andrew R. ;
Harding, Heather ;
Galanty, Yaron ;
Munoz-Martinez, Francisco ;
Metzakopian, Emmanouil ;
Jackson, Stephen P. ;
Parts, Leopold .
NATURE BIOTECHNOLOGY, 2019, 37 (01) :64-+
[3]   Entering the Modern Era of Gene Therapy [J].
Anguela, Xavier M. ;
High, Katherine A. .
ANNUAL REVIEW OF MEDICINE, VOL 70, 2019, 70 :273-288
[4]   Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors [J].
Anzalone, Andrew V. ;
Koblan, Luke W. ;
Liu, David R. .
NATURE BIOTECHNOLOGY, 2020, 38 (07) :824-844
[5]   Search-and-replace genome editing without double-strand breaks or donor DNA [J].
Anzalone, Andrew V. ;
Randolph, Peyton B. ;
Davis, Jessie R. ;
Sousa, Alexander A. ;
Koblan, Luke W. ;
Levy, Jonathan M. ;
Chen, Peter J. ;
Wilson, Christopher ;
Newby, Gregory A. ;
Raguram, Aditya ;
Liu, David R. .
NATURE, 2019, 576 (7785) :149-+
[6]   The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle [J].
Aylon, Y ;
Liefshitz, B ;
Kupiec, M .
EMBO JOURNAL, 2004, 23 (24) :4868-4875
[7]  
Bock D., 2021, TREATMENT METABOLIC, DOI [10.1101/2021.08.17.456632, DOI 10.1101/2021.08.17.456632]
[8]   Precise genome engineering in Drosophila using prime editing [J].
Bosch, Justin A. ;
Birchak, Gabriel ;
Perrimon, Norbert .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (01)
[9]   Non-viral ex vivo genome-editing in mouse bona fide hematopoietic stem cells with CRISPR/Cas9 [J].
Byambaa, Suvd ;
Uosaki, Hideki ;
Ohmori, Tsukasa ;
Hara, Hiromasa ;
Endo, Hitoshi ;
Nureki, Osamu ;
Hanazono, Yutaka .
MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, 2021, 20 :451-462
[10]   The φC31 integrase system for gene therapy [J].
Calos, Michele P. .
CURRENT GENE THERAPY, 2006, 6 (06) :633-645