Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature -: Part II:: Theoretical modeling

被引:22
作者
Dong, Jun
Shirakawa, A.
Ueda, K. -I.
Kaminskii, A. A.
机构
[1] Univ Electrocommun, Inst Laser Sci, Tokyo 1828585, Japan
[2] Russian Acad Sci, Inst Crystallog, Crystal Laser Phys Lab, Moscow 119333, Russia
来源
APPLIED PHYSICS B-LASERS AND OPTICS | 2007年 / 89卷 / 2-3期
关键词
D O I
10.1007/s00340-007-2808-2
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A theoretical model based on a quasi-four-level system is modified to investigate the effect of Yb concentration on performance of continuous-wave Yb:YAG microchip lasers by taking into account temperature-dependent thermal population distribution, temperature-dependent emission cross-section and concentration-dependent fluorescence lifetime, thermal loading, thermal conductivity, and thermal expansion coefficient. The local temperature rise in Yb:YAG crystal caused by the absorbed pump power plays an important role in the laser performance of Yb:YAG microchip lasers working at ambient temperature without actively cooling the sample. The output wavelengths dependent on output coupling, Yb concentration, and pump power level were analyzed quantitatively. The numerical simulation of Yb:YAG microchip lasers is in good agreement with experimental data. The optimized laser operation for Yb:YAG microchip lasers is proposed by varying the thickness and output coupling for different Yb concentrations. The effect of thermal lens, thermal deformation effect, and saturated inversion population distribution inside the Yb:YAG crystal on performance of heavy-doped Yb:YAG microchip lasers are also addressed.
引用
收藏
页码:367 / 376
页数:10
相关论文
共 33 条
[1]   MODELING OF LONGITUDINALLY PUMPED CW TI - SAPPHIRE LASER-OSCILLATORS [J].
ALFREY, AJ .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1989, 25 (04) :760-766
[2]  
BOGOMOLOVA GA, 1976, SOV PHYS JETP, V42, P440
[3]   Theoretical modelling and design of a Tm:YVO4 microchip laser [J].
Bourdet, GL ;
Lescroart, G .
OPTICS COMMUNICATIONS, 1998, 149 (4-6) :404-414
[4]   Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers [J].
Brown, DC .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1997, 33 (05) :861-873
[5]   A 2.65-kW Yb:YAG single-rod laser [J].
Bruesselbach, H ;
Sumida, DS .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2005, 11 (03) :600-603
[6]   Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers [J].
Bruesselbach, HW ;
Sumida, DS ;
Reeder, RA ;
Byren, RW .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1997, 3 (01) :105-116
[7]   TEMPERATURE AND THERMAL-STRESS SCALING IN FINITE-LENGTH END-PUMPED LASER RODS [J].
COUSINS, AK .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1992, 28 (04) :1057-1069
[8]   Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet [J].
Dong, J ;
Bass, M ;
Mao, YL ;
Deng, PZ ;
Gan, FX .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2003, 20 (09) :1975-1979
[9]   Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature -: Part I:: Experiments [J].
Dong, Jun ;
Shirakawa, A. ;
Ueda, K. -I. ;
Kaminskii, A. A. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2007, 89 (2-3) :359-365
[10]   Thermal coefficients of the optical path length and refractive index in YAG [J].
Fan, TY ;
Daneu, JL .
APPLIED OPTICS, 1998, 37 (09) :1635-1637