Hamiltonicity in Split Graphs - A Dichotomy

被引:6
作者
Renjith, P. [1 ]
Sadagopan, N. [1 ]
机构
[1] Indian Inst Informat Technol Design & Mfg Kanchee, Madras, Tamil Nadu, India
来源
ALGORITHMS AND DISCRETE APPLIED MATHEMATICS | 2017年 / 10156卷
关键词
CIRCUITS; TOUGHNESS;
D O I
10.1007/978-3-319-53007-9_28
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the well-studied Hamiltonian cycle problem, and present an interesting dichotomy result on split graphs. T. Akiyama, T. Nishizeki, and N. Saito [23] have shown that the Hamiltonian cycle problem is NP-complete in planar bipartite graph with maximum degree 3. Using this reduction, we show that the Hamiltonian cycle problem is NP-complete in split graphs. In particular, we show that the problem is NP-complete in K-1,K-5-free split graphs. Further, we present polynomial-time algorithms for Hamiltonian cycle in K-1,K-3-free and K-1,K-4-free split graphs. We believe that the structural results presented in this paper can be used to show similar dichotomy result for Hamiltonian path and other variants of Hamiltonian cycle problem.
引用
收藏
页码:320 / 331
页数:12
相关论文
共 25 条
[1]  
Akiyama T., 1980, Journal of Information Processing, V3, P73
[2]   LONG CYCLES IN GRAPHS WITH PRESCRIBED TOUGHNESS AND MINIMUM DEGREE [J].
BAUER, D ;
BROERSMA, HJ ;
VANDENHEUVEL, J ;
VELDMAN, HJ .
DISCRETE MATHEMATICS, 1995, 141 (1-3) :1-10
[3]   HAMILTONIAN CIRCUITS IN INTERVAL GRAPH GENERALIZATIONS [J].
BERTOSSI, AA ;
BONUCCELLI, MA .
INFORMATION PROCESSING LETTERS, 1986, 23 (04) :195-200
[4]   On some intriguing problems in hamiltonian graph theory - a survey [J].
Broersma, HJ .
DISCRETE MATHEMATICS, 2002, 251 (1-3) :47-69
[5]   A NOTE ON HAMILTONIAN SPLIT GRAPHS [J].
BURKARD, RE ;
HAMMER, PL .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1980, 28 (02) :245-248
[6]  
Chvatal V., 1973, Discrete Mathematics, V5, P215, DOI 10.1016/0012-365X(73)90138-6
[7]   The P versus NP-complete dichotomy of some challenging problems in graph theory [J].
de Figueiredo, Celina M. H. .
DISCRETE APPLIED MATHEMATICS, 2012, 160 (18) :2681-2693
[8]   HAMILTONIAN CIRCUITS DETERMINING THE ORDER OF CHROMOSOMES [J].
DORNINGER, D .
DISCRETE APPLIED MATHEMATICS, 1994, 50 (02) :159-168
[9]  
Garey M. R., 1976, SIAM Journal on Computing, V5, P704, DOI 10.1137/0205049
[10]   Advances on the Hamiltonian problem - A survey [J].
Gould, RJ .
GRAPHS AND COMBINATORICS, 2003, 19 (01) :7-52