The QIBA Profile for MRI-based Compositional Imaging of Knee Cartilage

被引:56
作者
Chalian, Majid [1 ]
Li, Xiaojuan [2 ]
Guermazi, Ali [4 ]
Obuchowski, Nancy A. [3 ]
Carrino, John A. [5 ]
Oei, Edwin H. [6 ,7 ]
Link, Thomas M. [8 ]
机构
[1] Univ Washington, UW Radiol Roosevelt Clin, Dept Radiol, Div Musculoskeletal Imaging & Intervent, 4245 Roosevelt Way NE,Box 354755, Seattle, WA 98105 USA
[2] Cleveland Clin, PAMI, Dept Biomed Engn, Cleveland, OH 44106 USA
[3] Cleveland Clin, Dept Biostat, Cleveland, OH 44106 USA
[4] Boston Univ, Sch Med, Dept Radiol, Boston, MA 02118 USA
[5] Hosp Special Surg, Dept Radiol & Imaging, 535 E 70th St, New York, NY 10021 USA
[6] Erasmus MC, Univ Med Ctr, Dept Radiol & Nucl Med, Rotterdam, Netherlands
[7] Univ Calif San Francisco, European Imaging Biomarkers Alliance, San Francisco, CA 94143 USA
[8] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA
基金
美国国家卫生研究院;
关键词
RELAXATION-TIME MEASUREMENTS; ARTICULAR-CARTILAGE; T-2; OSTEOARTHRITIS; T-1-RHO; PROGRESSION; REPRODUCIBILITY; MICROFRACTURE; SEGMENTATION; T1-RHO;
D O I
10.1148/radiol.2021204587
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
MRI-based cartilage compositional analysis shows biochemical and microstructural changes at early stages of osteoarthritis before changes become visible with structural MRI sequences and arthroscopy. This could help with early diagnosis, risk assessment, and treatment monitoring of osteoarthritis. Spin-lattice relaxation time constant in rotating frame (T1 rho) and T2 mapping are the MRI techniques best established for assessing cartilage composition. Only T2 mapping is currently commercially available, which is sensitive to water, collagen content, and orientation of collagen fibers, whereas T1 rho is more sensitive to proteoglycan content. Clinical application of cartilage compositional imaging is limited by high variability and suboptimal reproducibility of the biomarkers, which was the motivation for creating the Quantitative Imaging Biomarkers Alliance (QIBA) Profile for cartilage compositional imaging by the Musculoskeletal Biomarkers Committee of the QIBA. The profile aims at providing recommendations to improve reproducibility and to standardize cartilage compositional imaging. The QIBA Profile provides two complementary claims (summary statements of the technical performance of the quantitative imaging biomarkers that are being profiled) regarding the reproducibility of biomarkers. First, cartilage T1 rho and T2 values are measurable at 3.0-T MRI with a within-subject coefficient of variation of 4%-5%. Second, a measured increase or decrease in T1 rho and T2 of 14% or more indicates a minimum detectable change with 95% confidence. If only an increase in T1 rho and T2 values is expected (progressive cartilage degeneration), then an increase of 12% represents a minimum detectable change over time. The QIBA Profile provides recommendations for clinical researchers, clinicians, and industry scientists pertaining to image data acquisition, analysis, and interpretation and assessment procedures for T1 rho and T2 cartilage imaging and test-retest conformance. This special report aims to provide the rationale for the proposed claims, explain the content of the QIBA Profile, and highlight the future needs and developments for MRI-based cartilage compositional imaging for risk prediction, early diagnosis, and treatment monitoring of osteoarthritis. (C) RSNA, 2021
引用
收藏
页码:423 / 432
页数:10
相关论文
共 67 条
[1]   MRI T2 and T1 relaxation in patients at risk for knee osteoarthritis: a systematic review and meta-analysis [J].
Atkinson, Hayden F. ;
Birmingham, Trevor B. ;
Moyer, Rebecca F. ;
Yacoub, Daniel ;
Kanko, Lauren E. ;
Bryant, Dianne M. ;
Thiessen, Jonathan D. ;
Thompson, R. Terry .
BMC MUSCULOSKELETAL DISORDERS, 2019, 20 (1)
[2]   Magnetic resonance transverse relaxation time T2 of knee cartilage in osteoarthritis at 3-T: a cross-sectional multicentre, multivendor reproducibility study [J].
Balamoody, Sharon ;
Williams, Tomos G. ;
Wolstenholme, Chris ;
Waterton, John C. ;
Bowes, Michael ;
Hodgson, Richard ;
Zhao, Sha ;
Scott, Marietta ;
Taylor, Chris J. ;
Hutchinson, Charles E. .
SKELETAL RADIOLOGY, 2013, 42 (04) :511-520
[3]  
Bashir A, 1999, MAGNET RESON MED, V41, P857, DOI 10.1002/(SICI)1522-2594(199905)41:5<857::AID-MRM1>3.0.CO
[4]  
2-E
[5]   Cartilage Morphology at 3.0T: Assessment of Three-Dimensional Magnetic Resonance Imaging Techniques [J].
Chen, Christina A. ;
Kijowski, Richard ;
Shapiro, Lauren M. ;
Tuite, Michael J. ;
Davis, Kirkland W. ;
Klaers, Jessica L. ;
Block, Walter F. ;
Reeder, Scott B. ;
Gold, Garry E. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2010, 32 (01) :173-183
[6]   Obesity alters the in vivo mechanical response and biochemical properties of cartilage as measured by MRI [J].
Collins, Amber T. ;
Kulvaranon, Micaela L. ;
Cutcliffe, Hattie C. ;
Utturkar, Gangadhar M. ;
Smith, Wyatt A. R. ;
Spritzer, Charles E. ;
Guilak, Farshid ;
DeFrate, Louis E. .
ARTHRITIS RESEARCH & THERAPY, 2018, 20
[7]   T2 relaxation time measurements in osteoarthritis [J].
David-Vaudey, E ;
Ghosh, S ;
Ries, M ;
Majumdar, S .
MAGNETIC RESONANCE IMAGING, 2004, 22 (05) :673-682
[8]   Proposal for a nomenclature for Magnetic Resonance Imaging based measures of articular cartilage in osteoarthritis [J].
Eckstein, F. ;
Ateshian, G. ;
Burgkart, R. ;
Burstein, D. ;
Cicuttini, F. ;
Dardzinski, B. ;
Gray, M. ;
Link, T. M. ;
Majumdar, S. ;
Mosher, T. ;
Peterfy, C. ;
Totterman, S. ;
Waterton, J. ;
Winalski, C. S. ;
Felson, D. .
OSTEOARTHRITIS AND CARTILAGE, 2006, 14 (10) :974-983
[9]   Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks [J].
Gaj, Sibaji ;
Yang, Mingrui ;
Nakamura, Kunio ;
Li, Xiaojuan .
MAGNETIC RESONANCE IN MEDICINE, 2020, 84 (01) :437-449
[10]   T1ρ and T2 relaxation times are associated with progression of hip osteoarthritis [J].
Gallo, M. C. ;
Wyatt, C. ;
Pedoia, V. ;
Kumar, D. ;
Lee, S. ;
Nardo, L. ;
Link, T. M. ;
Souza, R. B. ;
Majumdar, S. .
OSTEOARTHRITIS AND CARTILAGE, 2016, 24 (08) :1399-1407