The principle of the largest terms and quantum large deviations

被引:0
作者
Gulinsky, OV [1 ]
机构
[1] Russian Acad Sci, Inst Informat Transmiss Problems, RAN, Moscow 101447, Russia
关键词
idempotent measures; quantum large deviations;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We give an approach to large deviation type asymptotic problems without evident probabilistic representation behind. An example provided by the mean field models of quantum statistical mechanics is considered.
引用
收藏
页码:229 / 247
页数:19
相关论文
共 10 条
[1]  
BOURBAKI N, 1959, INTEGRATION, pCH6
[2]  
BREYER V, 1996, LARGE DEVIATIONS INF
[3]  
BRYC W, 1990, PROG PROBAB, V22, P447
[4]  
Choquet G., 1954, ANN I FOURIER GRENOB, V5, P131, DOI [10.5802/aif.53, DOI 10.5802/AIF.53]
[5]   ULTRACONTRACTIVITY AND THE HEAT KERNEL FOR SCHRODINGER-OPERATORS AND DIRICHLET LAPLACIANS [J].
DAVIES, EB ;
SIMON, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1984, 59 (02) :335-395
[6]  
Kolokoltsov V.N., 1988, SOV MATH DOKL, V36, P55
[7]   A quantum crystal model in the light-mass limit: Gibbs states [J].
Minlos, RA ;
Verbeure, A ;
Zagrebnov, VA .
REVIEWS IN MATHEMATICAL PHYSICS, 2000, 12 (07) :981-1032
[8]   ASYMPTOTICS OF VARADHAN-TYPE AND THE GIBBS VARIATIONAL PRINCIPLE [J].
PETZ, D ;
RAGGIO, GA ;
VERBEURE, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (02) :271-282
[9]  
Puhalski A., 1994, Stoch. Stoch. Rep., V49, P27, DOI DOI 10.1080/17442509408833911
[10]   THE METHOD OF STOCHASTIC EXPONENTIALS FOR LARGE DEVIATIONS [J].
PUHALSKII, A .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1994, 54 (01) :45-70