Non-gaussianities for primordial black hole formation

被引:56
作者
Taoso, Marco [1 ]
Urbano, Alfredo [2 ,3 ]
机构
[1] Ist Nazl Fis Nucl, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy
[2] Sapienza Univ Roma, Dipartimento Fis, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[3] IFPU, Via Beirut 2, I-34014 Trieste, Italy
来源
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS | 2021年 / 08期
关键词
primordial black holes; dark matter theory; inflation;
D O I
10.1088/1475-7516/2021/08/016
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We analyze primordial non-gaussianities in presence of an ultra-slow phase during the inflationary dynamics, focusing on scenarios relevant for the production of primordial black holes. We compute the three-point correlation function of comoving curvature perturbations finding that non-gaussianities are sizable, and predominantly local. In the context of threshold statistics, we analyze their impact for the abundance of primordial black holes, and their interplay with the non-gaussianities arising from the non-linear relation between density and curvature perturbations. We find that non-gaussianities significantly modify the estimate of the primordial black holes abundance obtained with the gaussian approximation. However, we show that this effect can be compensated by a small change, of a factor 2o3 at most, of the amplitude of the primordial power spectrum of curvature perturbations. This is obtained with a small tuning of the parameters of the inflationary model.
引用
收藏
页数:41
相关论文
共 74 条
  • [1] Planck 2018 results: IX. Constraints on primordial non-Gaussianity
    Akrami, Y.
    Arroja, F.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Benabed, K.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Casaponsa, B.
    Challinor, A.
    Chiang, H. C.
    Colombo, L. P. L.
    Combet, C.
    Crill, B. P.
    Cuttaia, F.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Delouis, J. -M.
    Di Valentino, E.
    Diego, J. M.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Dusini, S.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fantaye, Y.
    Fergusson, J.
    Fernandez-Cobos, R.
    Finelli, F.
    Frailis, M.
    [J]. ASTRONOMY & ASTROPHYSICS, 2020, 641
  • [2] Primordial black hole formation with non-Gaussian curvature perturbations
    Atal, Vicente
    Garriga, Jaume
    Marcos-Caballero, Airam
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (09):
  • [3] The role of non-gaussianities in primordial black hole formation
    Atal, Vicente
    Germani, Cristiano
    [J]. PHYSICS OF THE DARK UNIVERSE, 2019, 24
  • [4] Stochastic inflationary dynamics beyond slow-roll and consequences for primordial black hole formation
    Ballesteros, Guillermo
    Rey, Julian
    Taoso, Marco
    Urbano, Alfredo
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2020, (08):
  • [5] Primordial black holes as dark matter and gravitational waves from single-field polynomial inflation
    Ballesteros, Guillermo
    Rey, Julian
    Taoso, Marco
    Urbano, Alfredo
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2020, (07):
  • [6] Primordial black hole dark matter from single field inflation
    Ballesteros, Guillermo
    Taoso, Marco
    [J]. PHYSICAL REVIEW D, 2018, 97 (02)
  • [7] THE STATISTICS OF PEAKS OF GAUSSIAN RANDOM-FIELDS
    BARDEEN, JM
    BOND, JR
    KAISER, N
    SZALAY, AS
    [J]. ASTROPHYSICAL JOURNAL, 1986, 304 (01) : 15 - 61
  • [8] Primordial black holes from inflation and quantum diffusion
    Biagetti, M.
    Franciolini, G.
    Kehagias, A.
    Riotto, A.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (07):
  • [9] Detecting a small perturbation through its non-Gaussianity
    Boubekeur, L
    Lyth, DH
    [J]. PHYSICAL REVIEW D, 2006, 73 (02):
  • [10] Bravo R., ARXIV200903369