Development and electrochemical investigations of an EIS( electrolyte-insulator-semiconductor) based biosensor for cyanide detection

被引:17
作者
Turek, Monika
Ketterer, Lothar
Classen, Melanie
Berndt, Heinz K.
Elbers, Gereon
Krueger, Peter
Keusgen, Michael
Schoening, Michael J.
机构
[1] Aachen Univ Appl Sci, Inst Nano & Biotechnol, D-52428 Julich, Germany
[2] Inst Bio & Nanosyst, Res Ctr, D-52428 Julich, Germany
[3] Univ Marburg, Inst Pharmaceut Chem, D-35037 Marburg, Germany
[4] Aachen Univ Appl Sci, D-52428 Julich, Germany
[5] ALA Analyt Lab GmbH, D-52070 Aachen, Germany
关键词
cyanide biosensor; EIS structure; cyanidase; pH; differential measurement set-up;
D O I
10.3390/s7081415
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A cyanide biosensor based on a pH-sensitive p-doped electrolyte-insulator-semiconductor (EIS) structure with an immobilised enzyme (cyanidase) is realised at the laboratory scale. The immobilisation of the cyanidase is performed in two distinct steps: first, the covalent coupling of cyanidase to an N-hydroxysuccinimide-(NHS) activated Sepharose (TM) gel and then, the physical entrapment of NHS-activated Sepharose (TM) with the immobilised cyanidase in a dialysis membrane onto the EIS structure. The immobilisation of the cyanidase to the NHS-activated Sepharose (TM) is studied by means of gel electrophoresis measurements and investigations using an ammonia-(NH3) selective electrode. For the electrochemical characterisation of the cyanide biosensor, capacitance/voltage and constant capacitance measurements, respectively, have been carried out. A differential measurement procedure is presented to evaluate the cyanide concentration-dependent biosensor signals.
引用
收藏
页码:1415 / 1426
页数:12
相关论文
共 28 条
[1]   A novel cyanide sensing phase based on immobilization of methyl violet on a triacetylcellulose membrane [J].
Afkhami, Abbas ;
Sarlak, Nahid .
SENSORS AND ACTUATORS B-CHEMICAL, 2007, 122 (02) :437-441
[2]  
Aldridge WN, 1944, ANALYST, V69, P262
[3]   Enhanced fluorescence cyanide detection at physiologically lethal levels: Reduced ICT-based signal transduction [J].
Badugu, R ;
Lakowicz, JR ;
Geddes, CD .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (10) :3635-3641
[4]   ESTIMATION OF MICROQUANTITIES OF CYANIDE [J].
EPSTEIN, J .
ANALYTICAL CHEMISTRY, 1947, 19 (04) :272-274
[5]   Continuous monitoring for cyanide in waste water with a galvanic hydrogen cyanide sensor using a purge system [J].
Hachiya, H ;
Ito, S ;
Fushinuki, Y ;
Masadome, T ;
Asano, Y ;
Imato, T .
TALANTA, 1999, 48 (05) :997-1004
[6]   CONTINUOUS DETERMINATION OF FREE CYANIDE IN EFFLUENTS USING SILVER ION-SELECTIVE ELECTRODE [J].
HOFTON, M .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1976, 10 (03) :277-280
[7]   NOVEL CYANIDE-HYDROLYZING ENZYME FROM ALCALIGENES-XYLOSOXIDANS SUBSP DENITRIFICANS [J].
INGVORSEN, K ;
HOJERPEDERSEN, B ;
GODTFREDSEN, SE .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1991, 57 (06) :1783-1789
[8]   Determination of cyanide using flow-injection multisensor system [J].
Ipatov, A ;
Ivanov, M ;
Makarychev-Mikhailov, S ;
Kolodnikov, V ;
Legin, A ;
Vlasov, Y .
TALANTA, 2002, 58 (06) :1071-1076
[9]   Why are so many food plants cyanogenic? [J].
Jones, DA .
PHYTOCHEMISTRY, 1998, 47 (02) :155-162
[10]   Direct determination of cyanides by potentiometric biosensors [J].
Keusgen, M ;
Kloock, JP ;
Knobbe, DT ;
Jünger, M ;
Krest, I ;
Goldbach, M ;
Klein, W ;
Schöning, MJ .
SENSORS AND ACTUATORS B-CHEMICAL, 2004, 103 (1-2) :380-385