Backlund transformation, multiple wave solutions and lump solutions to a (3+1)-dimensional nonlinear evolution equation

被引:157
作者
Gao, Li-Na [1 ]
Zi, Yao-Yao [1 ]
Yin, Yu-Hang [1 ]
Ma, Wen-Xiu [2 ,3 ,4 ]
Lu, Xing [1 ]
机构
[1] Beijing Jiao Tong Univ, Dept Math, Beijing 100044, Peoples R China
[2] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[3] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
[4] North West Univ, Int Inst Symmetry Anal & Math Modelling, Dept Math Sci, Mafikeng Campus,Private Bag X 2046, ZA-2735 Mmabatho, South Africa
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Backlund transformation; Nonresonant multiple wave solutions; Lump solution; Symbolic computation; HIROTA BILINEAR EQUATION; RATIONAL SOLUTIONS; SCHRODINGER-EQUATION; SOLITONS; MEDIA;
D O I
10.1007/s11071-017-3581-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, a (3+1)-dimensional nonlinear evolution equation is cast into Hirota bilinear form with a dependent variable transformation. A bilinear Backlund transformation is then presented, which consists of six bilinear equations and involves nine arbitrary parameters. With multiple exponential function method and symbolic computation, nonresonant-typed one-, two-, and three-wave solutions are obtained. Furthermore, two classes of lump solutions to the dimensionally reduced cases with y = x and y = z are both derived. Finally, some figures are given to reveal the propagation of multiple wave solutions and lump solutions.
引用
收藏
页码:2233 / 2240
页数:8
相关论文
共 24 条
[11]   Rational solutions to an extended Kadomtsev-Petviashvili-like equation with symbolic computation [J].
Lu, Xing ;
Ma, Wen-Xiu ;
Zhou, Yuan ;
Khalique, Chaudry Masood .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (08) :1560-1567
[12]   Soliton excitations and shape-changing collisions in alpha helical proteins with interspine coupling at higher order [J].
Lu, Xing ;
Lin, Fuhong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 32 :241-261
[13]   Envelope bright- and dark-soliton solutions for the Gerdjikov-Ivanov model [J].
Lu, Xing ;
Ma, Wen-Xiu ;
Yu, Jun ;
Lin, Fuhong ;
Khalique, Chaudry Masood .
NONLINEAR DYNAMICS, 2015, 82 (03) :1211-1220
[14]   Solitary waves with the Madelung fluid description: A generalized derivative nonlinear Schrodinger equation [J].
Lu, Xing ;
Ma, Wen-Xiu ;
Yu, Jun ;
Khalique, Chaudry Masood .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 31 (1-3) :40-46
[15]  
Ma WX, 2016, NONLINEAR DYNAM, V84, P923, DOI 10.1007/s11071-015-2539-6
[16]   Lump solutions to the Kadomtsev-Petviashvili equation [J].
Ma, Wen-Xiu .
PHYSICS LETTERS A, 2015, 379 (36) :1975-1978
[17]   A bilinear Backlund transformation of a (3+1)-dimensional generalized KP equation [J].
Ma, Wen-Xiu ;
Abdeljabbar, Alrazi .
APPLIED MATHEMATICS LETTERS, 2012, 25 (10) :1500-1504
[18]   Hirota bilinear equations with linear subspaces of solutions [J].
Ma, Wen-Xiu ;
Zhang, Yi ;
Tang, Yaning ;
Tu, Junyi .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (13) :7174-7183
[19]   Linear superposition principle applying to Hirota bilinear equations [J].
Ma, Wen-Xiu ;
Fan, Engui .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (04) :950-959
[20]   Nonautonomous solitons in modified inhomogeneous Hirota equation: soliton control and soliton interaction [J].
Rajan, M. S. Mani ;
Mahalingam, A. .
NONLINEAR DYNAMICS, 2015, 79 (04) :2469-2484