Characterization and hardness of TiCu-Ti2Cu3 intermetallic material fabricated by mechanical alloying and subsequent annealing

被引:20
作者
Akbarpour, Mohammad Reza [1 ]
Hesari, Feridoun Alikhani [2 ]
机构
[1] Univ Maragheh, Fac Engn, Dept Mat Engn, POB 83111-55181, Maragheh, Iran
[2] MERC, POB 14155-4777, Tehran, Iran
来源
MATERIALS RESEARCH EXPRESS | 2016年 / 3卷 / 04期
关键词
intermetallic compound; nanocrystalline; microhardness; mechanical alloying; synthesis; CU; MICROSTRUCTURE; NANOCOMPOSITE; TICU;
D O I
10.1088/2053-1591/3/4/045004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this research, the microstructural and phase evolutions during mechanical alloying (MA) and subsequent heat treatment of Cu-Ti powder mixture are investigated through x-ray diffraction, scanning electron microscopy, transmission electron microscopy and micro-hardness measurements. The obtained experimental results demonstrated that after an optimum MA time of 30 h, TiCu intermetallic compound was achieved with a mean grain size of approximate to 8 nm and a high micro-hardness value of approximate to 634 Hv. Annealing the milled powder at different temperatures resulted in formation of major TiCu and Ti2Cu3, and minor Ti2Cu and Cu4Ti nanocrystalline phases, release of internal strain, and coarsening of grains. The amount of TiCu phase and the grain size increased with increase of the annealing temperature. Micro-hardness value of approximate to 765 Hv was recorded when the milled TiCu powder was annealed at 850 degrees C. This superior high micro-hardness value can be attributed to formation of higher amount of TiCu phase.
引用
收藏
页数:10
相关论文
共 19 条
[1]   Microstructure and compressibility of SiC nanoparticles reinforced Cu nanocomposite powders processed by high energy mechanical milling [J].
Akbarpour, M. R. ;
Salahi, E. ;
Hesari, F. Alikhani ;
Simchi, A. ;
Kim, H. S. .
CERAMICS INTERNATIONAL, 2014, 40 (01) :951-960
[2]   Microstructural development and mechanical properties of nanostructured copper reinforced with SiC nanoparticles [J].
Akbarpour, M. R. ;
Salahi, E. ;
Hesari, F. Alikhani ;
Yoon, E. Y. ;
Kim, H. S. ;
Simchi, A. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 568 :33-39
[3]   NANOCRYSTALLINE METALS PREPARED BY HIGH-ENERGY BALL MILLING [J].
FECHT, HJ ;
HELLSTERN, E ;
FU, Z ;
JOHNSON, WL .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1990, 21 (09) :2333-2337
[4]   Electronic energy structure of TiCu and Ti2Cu [J].
Gelius, U ;
Kolpachev, AB ;
Kolpacheva, OV ;
Nikiforov, IY ;
Chularis, AA .
JOURNAL OF STRUCTURAL CHEMISTRY, 2001, 42 (04) :578-582
[5]   TRIBOCHEMICAL EQUILIBRIUM IN MECHANICAL ALLOYING OF METALS [J].
GERASIMOV, KB ;
GUSEV, AA ;
IVANOV, EY ;
BOLDYREV, VV .
JOURNAL OF MATERIALS SCIENCE, 1991, 26 (09) :2495-2500
[6]   Structural and microstructural study of nanostructured Fe50Al40Ni10 powders produced by mechanical alloying [J].
Hadef, F. ;
Otmani, A. ;
Djekoun, A. ;
Greneche, J. M. .
MATERIALS CHARACTERIZATION, 2011, 62 (08) :751-759
[7]   Grindability of cast Ti-Cu alloys [J].
Kikuchi, M ;
Takada, Y ;
Kiyosue, S ;
Yoda, M ;
Woldu, M ;
Cai, Z ;
Okuno, O ;
Okabe, T .
DENTAL MATERIALS, 2003, 19 (05) :375-381
[8]   Effect of milling variables on the synthesis of NiAl intermetallic compound by mechanical alloying [J].
Kubaski, E. T. ;
Cintho, O. M. ;
Capocchi, J. D. T. .
POWDER TECHNOLOGY, 2011, 214 (01) :77-82
[9]   Synthesis of CoWSi-WSi2 nanocomposite by mechanical alloying and subsequent heat treatment [J].
Mehrizi, M. Zarezadeh ;
Shamanian, M. ;
Saidi, A. .
CERAMICS INTERNATIONAL, 2014, 40 (07) :9493-9498
[10]   Synthesis and formation mechanism of nanostructured NbAl3 intermetallic during mechanical alloying and a kinetic study on its formation [J].
Mostaan, H. ;
Karimzadeh, F. ;
Abbasi, M. H. .
THERMOCHIMICA ACTA, 2012, 529 :36-44