Energy decay for a weakly nonlinear damped piezoelectric beams with magnetic effects and a nonlinear delay term

被引:20
作者
Soufyane, A. [1 ]
Afilal, M. [2 ]
Santos, M. L. [3 ]
机构
[1] Univ Sharjah, Coll Sci, Dept Math, POB 27272, Sharjah, U Arab Emirates
[2] Univ Cadi Ayyad, Fac Polydisciplinaire Safi, Dept Math & Informat, Marrakech, Morocco
[3] Fed Univ Para, Doctoral Program Math, Inst Exact & Nat Sci, Augusto Correa St 01, BR-66075110 Belem, PA, Brazil
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2021年 / 72卷 / 04期
关键词
Piezoelectric beams; Energy decay; Nonlinear damping; Nonlinear delay term; STABILIZATION; INSTABILITY; STABILITY; BOUNDARY;
D O I
10.1007/s00033-021-01593-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers a one-dimensional piezoelectric beams with magnetic effect damped with a weakly nonlinear feedback in the presence of a nonlinear delay term. Under appropriate assumptions on the weight of the delay, we establish an energy decay rate, using a perturbed energy method and some properties of a convex functions. Our result generalizes the recent result obtained in Ramos et al. (Z Angew Math Phys 72:26, 2021). https://doi.org/10.1007/s00033-020-01457-8.
引用
收藏
页数:12
相关论文
共 10 条
[1]  
Afilal M., PIEZOELECTRIC BEAMS
[2]   GLOBAL EXISTENCE AND ENERGY DECAY OF SOLUTIONS TO A NONLINEAR TIMOSHENKO BEAM SYSTEM WITH A DELAY TERM [J].
Benaissa, Abbes ;
Bahlil, Mounir .
TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (05) :1411-1437
[3]   AN EXAMPLE ON THE EFFECT OF TIME DELAYS IN BOUNDARY FEEDBACK STABILIZATION OF WAVE-EQUATIONS [J].
DATKO, R ;
LAGNESE, J ;
POLIS, MP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1986, 24 (01) :152-156
[4]  
Morris K, 2013, IEEE DECIS CONTR P, P3014, DOI 10.1109/CDC.2013.6760341
[5]   MODELING AND STABILIZABILITY OF VOLTAGE-ACTUATED PIEZOELECTRIC BEAMS WITH MAGNETIC EFFECTS [J].
Morris, K. A. ;
Oezer, A. Oe. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (04) :2371-2398
[6]   Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks [J].
Nicaise, Serge ;
Pignotti, Cristina .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2006, 45 (05) :1561-1585
[7]   DYNAMIC PIEZOELECTRIC TRANSLATION DEVICES [J].
POHL, DW .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1987, 58 (01) :54-57
[8]   INSTABILITY OF COUPLED SYSTEMS WITH DELAY [J].
Racke, Reinhard .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (05) :1753-1773
[9]   Exponential stabilization of fully dynamic and electrostatic piezoelectric beams with delayed distributed damping feedback [J].
Ramos, A. J. A. ;
Ozer, A. O. ;
Freitas, M. M. ;
Almeida Junior, D. S. ;
Martins, J. D. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (01)
[10]   EXPONENTIAL STABILITY AND NUMERICAL TREATMENT FOR PIEZOELECTRIC BEAMS WITH MAGNETIC EFFECT [J].
Ramos, Anderson J. A. ;
Goncalves, Cledson S. L. ;
Correa Neto, Silverio S. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (01) :255-274