Mesenchymal Stem Cell-Derived Exosomes Reduce A1 Astrocytes via Downregulation of Phosphorylated NFκB P65 Subunit in Spinal Cord Injury

被引:193
作者
Wang, Lin [1 ]
Pei, Shuang [1 ]
Han, Linlin [1 ]
Guo, Bin [1 ]
Li, Yanfei [1 ]
Duan, Ranran [1 ]
Yao, Yaobing [1 ]
Xue, Bohan [2 ]
Chen, Xuemei [2 ]
Jia, Yanjie [1 ]
机构
[1] Zhengzhou Univ, Affiliated Hosp 1, East Jianshe Rd, Zhengzhou, Henan, Peoples R China
[2] Zhengzhou Univ, Sch Basic Med Sci, Zhengzhou, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Mesenchymal stem cell; Exosomes; Spinal cord injury; Astrocytes; Inflammation; DEPRIVATION/REOXYGENATION-INDUCED INJURY; STROMAL CELLS; BONE-MARROW; FUNCTIONAL RECOVERY; SYSTEMIC INFLAMMATION; REACTIVE ASTROCYTES; SIGNALING PATHWAY; NEUROVASCULAR PLASTICITY; MITOCHONDRIAL TRANSFER; INTRAVENOUS-INFUSION;
D O I
10.1159/000494652
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Background/Aims: Neurotoxic A1 astrocytes are induced by inflammation after spinal cord injury (SCI), and the inflammation-related Nuclear Factor Kappa B (NF kappa B) pathway may be related to A1-astrocyte activation. Mesenchymal stem cell (MSC) transplantation is a promising therapy for SCI, where transplanted MSCs exhibit anti-inflammatory effects by downregulating proinflammatory factors, such as Tumor Necrosis Factor (TNF)-alpha and NF kappa B. MSC-exosomes (MSC-exo) reportedly mimic the beneficial effects of MSCs. Therefore, in this study, we investigated whether MSCs and MSC-exo exert inhibitory effects on A1 astrocytes and are beneficial for recovery after SCI. Methods: The effects of MSC and MSC-exo on SCI-induced A1 astrocytes, and the potential mechanisms were investigated in vitro and in vivo using immunofluorescence and western blot. In addition, we assessed the histopathology, levels of proinflammatory cytokines and locomotor function to verify the effects of MSC and MSC-exo on SCI rats. Results: MSC or MSC-exo co-culture reduced the proportion of SCI-induced A1 astrocytes. Intravenously-injected MSC or MSC-exo after SCI significantly reduced the proportion of A1 astrocytes, the percentage of p65 positive nuclei in astrocytes, and the percentage of TUNEL-positive cells in the ventral horn. Additionally, we observed decreased lesion area and expression of TNF alpha, Interleukin (IL)-1 alpha and IL-1 beta, elevated expression of Myelin Basic Protein (MBP), Synaptophysin (Syn) and Neuronal Nuclei (NeuN), and improved Basso, Beattie & Bresnahan (BBB) scores and inclined-plane-test angle. In vitro assay showed that MSC and MSC-exo reduced SCI-induced A1 astrocytes, probably via inhibiting the nuclear translocation of the NF kappa B p65. Conclusion: MSC and MSC-exo reduce SCI-induced A1 astrocytes, probably via inhibiting nuclear translocation of NF kappa B p65, and exert anti-inflammatory and neuroprotective effects following SCI, with the therapeutic effect of MSC-exo comparable with that of MSCs when applied intravenously. (c) 2018 The Author( s) Published by S. Karger AG, Basel
引用
收藏
页码:1535 / 1559
页数:25
相关论文
共 89 条
[1]   THE BIOLOGY OF REGENERATION FAILURE AND SUCCESS AFTER SPINAL CORD INJURY [J].
Amanda Phuong Tran ;
Warren, Philippa Mary ;
Silver, Jerry .
PHYSIOLOGICAL REVIEWS, 2018, 98 (02) :881-917
[2]   Astrocyte scar formation aids central nervous system axon regeneration [J].
Anderson, Mark A. ;
Burda, Joshua E. ;
Ren, Yilong ;
Ao, Yan ;
O'Shea, Timothy M. ;
Kawaguchi, Riki ;
Coppola, Giovanni ;
Khakh, Baljit S. ;
Deming, Timothy J. ;
Sofroniew, Michael V. .
NATURE, 2016, 532 (7598) :195-+
[3]   Early Intravenous Delivery of Human Brain Stromal Cells Modulates Systemic Inflammation and Leads to Vasoprotection in Traumatic Spinal Cord Injury [J].
Badner, Anna ;
Vawda, Reaz ;
Laliberte, Alex ;
Hong, James ;
Mikhail, Mirriam ;
Jose, Alejandro ;
Dragas, Rachel ;
Fehlings, Michael .
STEM CELLS TRANSLATIONAL MEDICINE, 2016, 5 (08) :991-1003
[4]   Tetrandrine protects against oxygen-glucose-serum deprivation/reoxygenation-induced injury via PI3K/AKT/NF-κB signaling pathway in rat spinal cord astrocytes [J].
Bao, Gang ;
Li, Chuankun ;
Qi, Lei ;
Wang, Ning ;
He, Baixiang .
BIOMEDICINE & PHARMACOTHERAPY, 2016, 84 :925-930
[5]   Systemic Inflammation as a Driver of Brain Injury: the Astrocyte as an Emerging Player [J].
Bellaver, Bruna ;
dos Santos, Joo Paulo ;
Leffa, Douglas Teixeira ;
Bobermin, Larissa Daniele ;
Amaral Roppa, Paola Haack ;
da Silva Torres, Iraci Lucena ;
Goncalves, Carlos-Alberto ;
Souza, Diogo Onofre ;
Quincozes-Santos, Andre .
MOLECULAR NEUROBIOLOGY, 2018, 55 (03) :2685-2695
[6]   Transcriptomic analyses of primary astrocytes under TNF alpha treatment [J].
Birck, Cindy ;
Koncina, Eric ;
Heurtaux, Tony ;
Glaab, Enrico ;
Michelucci, Alessandro ;
Heuschling, Paul ;
Grandbarbe, Luc .
GENOMICS DATA, 2016, 7 :7-11
[7]   Microglia-mediated neurotoxicity: uncovering the molecular mechanisms [J].
Block, Michelle L. ;
Zecca, Luigi ;
Hong, Jau-Shyong .
NATURE REVIEWS NEUROSCIENCE, 2007, 8 (01) :57-69
[8]   Review: Activation patterns of microglia and their identification in the human brain [J].
Boche, D. ;
Perry, V. H. ;
Nicoll, J. A. R. .
NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY, 2013, 39 (01) :3-18
[9]   Inhibition of astroglial NF-kappaB enhances oligodendrogenesis following spinal cord injury [J].
Bracchi-Ricard, Valerie ;
Lambertsen, Kate L. ;
Ricard, Jerome ;
Nathanson, Lubov ;
Karmally, Shaffiat ;
Johnstone, Joshua ;
Ellman, Ditte G. ;
Frydel, Beata ;
McTigue, Dana M. ;
Bethea, John R. .
JOURNAL OF NEUROINFLAMMATION, 2013, 10
[10]   Inhibition of astroglial nuclear factor κB reduces inflammation and improves functional recovery after spinal cord injury [J].
Brambilla, R ;
Bracchi-Ricard, V ;
Hu, WH ;
Frydel, B ;
Bramwell, A ;
Karmally, S ;
Green, EJ ;
Bethea, JR .
JOURNAL OF EXPERIMENTAL MEDICINE, 2005, 202 (01) :145-156