Model-based distinction and quantification of capacity loss and rate capability fade in Li-ion batteries

被引:121
作者
Schmidt, Alexander P. [1 ]
Bitzer, Matthias [2 ]
Imnre, Arpad W. [1 ]
Guzzella, Lino [3 ]
机构
[1] Robert Bosch GmbH, Corp Res, Elect Vehicle Syst & Components, D-71701 Schwieberdingen, Germany
[2] Robert Bosch GmbH, Corp Res, Control Theory, D-71701 Schwieberdingen, Germany
[3] Swiss Fed Inst Technol, IDSC, CH-8092 Zurich, Switzerland
关键词
Electrochemical battery modeling; SOH estimation; Online parameter estimation; Solid-electrolyte interface; Electrolyte dissociation; MATHEMATICAL-MODEL; STRESS GENERATION; AGING MECHANISMS; FRACTURE; CELLS;
D O I
10.1016/j.jpowsour.2010.06.011
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work is focused on an easy-to-handle approach for estimating the residue power and capacity of a lithium-ion cell during operation. For this purpose, an earlier presented lumped parameter electrochemical battery model is employed. By means of the parameters accounting for the cathode capacity and the electrolyte conductivity, the cell degradation is successfully reproduced. Moreover, the method enables the distinction of capacity fade due to impedance rise and due to active material loss. High discharge rates together with the correlated self-heating of the cell enable a model-based quantification of SEI and electrolyte contributions to the overpotential. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:7634 / 7638
页数:5
相关论文
共 50 条
  • [41] Control-oriented Coupled Electrochemical Thermal Model for Li-Ion Batteries
    Onesto, Luca
    Marelli, Stefano
    Corno, Matteo
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [42] The Simulation Analysis Of The Capacity Loss Of The High Power LiFePO4-graphite Li-ion Batteries Under Different Charging Strategies
    Liu, Chunhui
    Zhang, DeLong
    Zha, Wenke
    Wang, Jixiang
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2024, 27 (07): : 2791 - 2798
  • [43] Differential Expansion and Voltage Model for Li-ion Batteries at Practical Charging Rates
    Mohtat, Peyman
    Lee, Suhak
    Sulzer, Valentin
    Siegel, Jason B.
    Stefanopoulou, Anna G.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (11)
  • [44] Surface modification by sulfated zirconia on high-capacity nickel-based cathode materials for Li-ion batteries
    Woo, Sang-Gil
    Han, Jae-Hee
    Kim, Ki Jae
    Kim, Jae-Hun
    Yu, Ji-Sang
    Kim, Young-Jun
    ELECTROCHIMICA ACTA, 2015, 153 : 115 - 121
  • [45] Effect of VC additive on MFA-based electrolyte in Li-ion batteries
    Zhao, Liwei
    Okada, Shigeto
    Yamaki, Jun-ichi
    JOURNAL OF POWER SOURCES, 2013, 244 : 369 - 374
  • [46] Evaluation on a water-based binder for the graphite anode of Li-ion batteries
    Zhang, SS
    Xu, K
    Jow, TR
    JOURNAL OF POWER SOURCES, 2004, 138 (1-2) : 226 - 231
  • [47] Variation of stress with charging rate due to strain-rate sensitivity of silicon electrodes of Li-ion batteries
    Pharr, Matt
    Suo, Zhigang
    Vlassak, Joost J.
    JOURNAL OF POWER SOURCES, 2014, 270 : 569 - 575
  • [48] Sulfone-based electrolytes for high-voltage Li-ion batteries
    Abouimrane, A.
    Belharouak, I.
    Amine, K.
    ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (05) : 1073 - 1076
  • [49] Dispersion-strengthened microparticle silicon composite with high anti-pulverization capability for Li-ion batteries
    Yang, Yaxiong
    Ni, Chaolun
    Gao, Mingxia
    Wang, Jiangwei
    Liu, Yongfeng
    Pan, Hongge
    ENERGY STORAGE MATERIALS, 2018, 14 : 279 - 288
  • [50] A three-dimensional meso-macroscopic model for Li-Ion intercalation batteries
    Allu, S.
    Kalnaus, S.
    Simunovic, S.
    Nanda, J.
    Turner, J. A.
    Pannala, S.
    JOURNAL OF POWER SOURCES, 2016, 325 : 42 - 50