Effect of the heat treatment on the microstructure and hardness evolution of a AlSi10MgCu alloy designed for laser powder bed fusion

被引:16
|
作者
Martin, A. [1 ]
San Sebastian, M. [2 ]
Gil, E. [2 ]
Wang, C. Y. [3 ]
Milenkovic, S. [1 ]
Perez-Prado, M. T. [1 ]
Cepeda-Jimenez, C. M. [4 ,5 ]
机构
[1] IMDEA Mat Inst, C Eric Kandel 2, Madrid 28906, Spain
[2] LORTEK S Coop Technol Ctr, Arranomendia 4A, Ordizia 20240, Spain
[3] Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
[4] Ctr Nacl Invest Metalurg CENIM CSIC, Dept Phys Met, Avda Gregorio Amo 8, Madrid 28040, Spain
[5] CENIM CSIC, Dept Phys Met, Avda Gregorio Amo 8, Madrid 28040, Spain
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2021年 / 819卷
基金
欧盟地平线“2020”;
关键词
Aluminium; Laser powder bed fusion; Additive manufacturing; Microstructure; Precipitation hardening; SINTERING/MELTING SLS/SLM; MECHANICAL-PROPERTIES; CU ALLOYS; AL; PRECIPITATION; BEHAVIOR; STRENGTH; MG; TEMPERATURE;
D O I
10.1016/j.msea.2021.141487
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The aim of this work is to investigate the influence of the addition of Cu on the microstructure and on the microhardness of a laser powder bed fusion (L-PBF)-fabricated AlSi10MgCu alloy. With this goal, AlSi10Mg+4 wt%Cu pre-alloyed powder was produced by gas atomization. Following a parameter optimization study, dense as-built specimens with a high relative density of 99.8% were fabricated. An outstanding microhardness value, exceeding 180 HV, was obtained after aging at 160 degrees C for 16 h. This value is similar to that of the high strength Al 7075 in the T6 condition. With the aid of analytical transmission electron microscopy, it was concluded that the origin of the observed excellent mechanical behavior could be attributed to the beneficial effect of Cu in reducing the Al-matrix cell size, and in increasing the density and decreasing the size of the Si-based nanoprecipitates at cell interiors. More specifically, it is proposed that the maximum hardness is associated to the development of Cu-rich GP-I zones, which act as precursors of Si nanoprecipitates. Overaging leads to a reduction in microhardness due to transformation of these GP-I zones into coarser theta" precipitates and thus to a smaller volume fraction of larger Si-based nanoparticles.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Effect of heat treatments on microstructure and properties of CuCrZr produced by laser-powder bed fusion
    Wallis, Christopher
    Buchmayr, Bruno
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 744 : 215 - 223
  • [32] Enhancing microstructure and mechanical properties of laser powder bed fusion-fabricated AlSi10Mg alloy through tailored friction stir processing and post-heat treatment
    Khajeh, Rasoul
    Javidani, Mousa
    Mofarrehi, Mohammadreza
    Chen, X. -Grant
    Ahmed, Mohamed
    Farzaneh, Amir
    Heidarzadeh, Akbar
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 889
  • [33] Study of Microstructure and Surface Morphology of AlSi10Mg Alloy Manufactured by Laser Powder Bed Fusion
    Cui, Lujun
    Liu, Songyang
    Li, Xiaolei
    Wang, Mengle
    Guo, Shirui
    Cui, Yinghao
    Chen, Yongqian
    Liu, Jialin
    Zheng, Bo
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024,
  • [34] Influence of powder size on defect generation in laser powder bed fusion of AlSi10Mg alloy
    Chu, Fuzhong
    Li, Erlei
    Shen, Haopeng
    Chen, Zhuoer
    Li, Yixin
    Liu, Hui
    Min, Shiling
    Tian, Xinni
    Zhang, Kai
    Zhou, Zongyan
    Zou, Ruiping
    Hou, Juan
    Wu, Xinhua
    Huang, Aijun
    JOURNAL OF MANUFACTURING PROCESSES, 2023, 94 : 183 - 195
  • [35] Corrosion Behavior of Heat-Treated AlSi10Mg Manufactured by Laser Powder Bed Fusion
    Cabrini, Marina
    Calignano, Flaviana
    Fino, Paolo
    Lorenzi, Sergio
    Lorusso, Massimo
    Manfredi, Diego
    Testa, Cristian
    Pastore, Tommaso
    MATERIALS, 2018, 11 (07):
  • [36] Fatigue response of AlSi10Mg by laser powder bed fusion: influence of build orientation, heat, and surface treatments
    Fini, S.
    Croccolo, D.
    De Agostinis, M.
    Olmi, G.
    Paiardini, L.
    Scapecchi, C.
    Mele, M.
    PROGRESS IN ADDITIVE MANUFACTURING, 2025, 10 (02) : 1385 - 1403
  • [37] Heat treatment effect on microstructure evolution of two Si steels manufactured by laser powder bed fusion
    Di Schino, Andrea
    Montanari, Roberto
    Sgambetterra, Mirko
    Stornelli, Giulia
    Varone, Alessandra
    Zucca, Guido
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 26 : 8406 - 8424
  • [38] Laser powder bed fusion of AlSi10Mg alloy: Numerical investigation on the temperature field evolution
    Ricci, Sara
    Testa, Gabriel
    Iannitti, Gianluca
    Ruggiero, Andrew
    FORCES IN MECHANICS, 2022, 8
  • [39] Microstructural evolution and mechanical performance of nano-Nb-modified AlSi10Mg alloy fabricated by laser powder bed fusion
    Luo, Hao
    Li, Kefeng
    Pan, Cunliang
    Li, Xiaoqiang
    Zhao, Junhao
    Li, Zun
    Liu, Keying
    Zhang, Tao
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 32 : 1959 - 1970
  • [40] In situ alloying of AlSi10Mg-5 wt% Ni through laser powder bed fusion and subsequent heat treatment
    Jandaghi, Mohammad Reza
    Aversa, Alberta
    Manfredi, Diego
    Calignano, Flaviana
    Lavagna, Luca
    Pavese, Matteo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 904