Algebra of q-difference operators, affine vertex algebras, and their modules

被引:3
作者
Guo, Hongyan [1 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
关键词
q-analog Virasoro-like algebra; Generalized affine Lie algebras; Vertex algebras; Modules; Q-VIRASORO ALGEBRA; Q-ANALOG; REPRESENTATIONS;
D O I
10.1016/j.jalgebra.2021.06.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we explore a canonical connection between the algebra of q-difference operators (V) over tilde (q), affine Lie algebras and affine vertex algebras associated to certain subalgebra A of the Lie algebra gl(infinity). We also introduce and study a category R of (V) over tilde (q)-modules. More precisely, we obtain a realization of (V) over tilde (q) as a covariant algebra of the affine Lie algebra (A) over cap*, where A* is a 1-dimensional central extension of A. We prove that restricted (V) over tilde (q)-modules of level l(12) correspond to Z-equivariant f-coordinated quasi-modules for the vertex algebra V-(A) over tilde (l(12), 0), where (A) over tilde is a generalized affine Lie algebra of A. In the end, we show that objects in the category Rare restricted (V) over tilde (q)-modules, and we classify simple modules in the category R. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:69 / 88
页数:20
相关论文
共 19 条
[1]   Quantum tori and the structure of elliptic quasi-simple Lie algebras [J].
Berman, S ;
Gao, Y ;
Krylyuk, YS .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 135 (02) :339-389
[2]   Twisted Representations of Algebra of q-Difference Operators, Twisted q-W Algebras and Conformal Blocks [J].
Bershtein, Mikhail ;
Gonin, Roman .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
[3]   VERTEX OPERATOR-ALGEBRAS ASSOCIATED TO REPRESENTATIONS OF AFFINE AND VIRASORO ALGEBRAS [J].
FRENKEL, IB ;
ZHU, YC .
DUKE MATHEMATICAL JOURNAL, 1992, 66 (01) :123-168
[4]   Γ-conformal algebras [J].
Golenishcheva-Kutuzova, MI ;
Kac, VG .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (04) :2290-2305
[5]   q-Virasoro algebra and affine Kac-Moody Lie algebras [J].
Guo, Hongyan ;
Li, Haisheng ;
Tan, Shaobin ;
Wang, Qing .
JOURNAL OF ALGEBRA, 2019, 534 :168-189
[6]   q-Virasoro algebra and vertex algebras [J].
Guo, Hongyan ;
Li, Haisheng ;
Tan, Shaobin ;
Wang, Qing .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (04) :1258-1277
[7]   Associating quantum vertex algebras to Lie algebra gl∞ [J].
Jiang, Cuipo ;
Li, Haisheng .
JOURNAL OF ALGEBRA, 2014, 399 :1086-1106
[8]   A Q-ANALOG FOR THE VIRASORO ALGEBRA [J].
KIRKMAN, E ;
PROCESI, C ;
SMALL, L .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (10) :3755-3774
[9]  
Lepowsky J., 2004, PROGR MATH, V227
[10]   On certain generalizations of twisted affine Lie algebras and quasimodules for Γ-vertex algebras [J].
Li, Haisheng .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 209 (03) :853-871