Effect of viscosity on the AC magnetization of magnetic nanoparticles under different AC excitation fields

被引:13
作者
Yoshida, Takashi [1 ]
Nakamura, Takuru [1 ]
Higashi, Oji [1 ]
Enpuku, Keiji [1 ]
机构
[1] Kyushu Univ, Dept Elect & Elect Engn, Fukuoka, Fukuoka 8190395, Japan
关键词
Magnetic nanoparticle; Viscosity; Field dependent relaxation; Magnetic fluid hyperthermia; Magnetic particle imaging; HARMONIC SIGNALS; FRACTIONATION; FERROFLUID; FLUID;
D O I
10.1016/j.jmmm.2018.09.127
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
For in vivo applications of magnetic nanoparticles (MNPs), environment viscosity is one of the most important parameters that determines their AC magnetization. In this study, we investigate the effect of viscosity on the AC magnetization of MNPs under different AC excitation field conditions. We show that the AC M - H curve and harmonic magnetization spectrum strongly depend on the viscosity for a small excitation field intensity and low excitation frequency, while they are insensitive to the viscosity for a large excitation field intensity and high excitation frequency. We then show that the difference in the AC magnetization between these cases can be qualitatively explained by taking the field dependent Brownian f(B)(H-ac) and Neel f(N)(H-ac) frequencies into account. The frequencies are obtained from numerical simulations based on the Fokker-Planck equations. Finally, we show that an excitation field with a relatively large intensity and a frequency f that satisfies f(B)(H-ac) << f <= f(N)(H-ac) is suitable for the magnetic fluid hyperthermia (MFH) application.
引用
收藏
页码:334 / 339
页数:6
相关论文
共 29 条
[1]   New method for the determination of the particle magnetic moment distribution in a ferrofluid [J].
Berkov, DV ;
Görnert, P ;
Buske, N ;
Gansau, C ;
Mueller, J ;
Giersig, M ;
Neumann, W ;
Su, D .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2000, 33 (04) :331-337
[2]   Unraveling viscosity effects on the hysteresis losses of magnetic nanocubes [J].
Cabrera, D. ;
Lak, A. ;
Yoshida, T. ;
Materia, M. E. ;
Ortega, D. ;
Ludwig, F. ;
Guardia, P. ;
Sathya, A. ;
Pellegrino, T. ;
Teran, F. J. .
NANOSCALE, 2017, 9 (16) :5094-5101
[3]   Formula for the viscosity of a glycerol-water mixture [J].
Cheng, Nian-Sheng .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (09) :3285-3288
[4]  
Coffey W.T., 1993, ADV CHEM PHYS, V83, P263, DOI [DOI 10.1002/9780470141410.CH5, 10.1002/9780470141410.ch5/summary]
[5]   Nonlinear dielectric relaxation of polar molecules in a strong ac electric field:: Steady state response [J].
Déjardin, JL ;
Kalmykov, YP .
PHYSICAL REVIEW E, 2000, 61 (02) :1211-1217
[6]   How the size distribution of magnetic nanoparticles determines their magnetic particle imaging performance [J].
Eberbeck, D. ;
Wiekhorst, F. ;
Wagner, S. ;
Trahms, L. .
APPLIED PHYSICS LETTERS, 2011, 98 (18)
[7]   Empirical expression for DC magnetization curve of immobilized magnetic nanoparticles for use in biomedical applications [J].
Elrefai, Ahmed L. ;
Sasayama, Teruyoshi ;
Yoshida, Takashi ;
Enpuku, Keiji .
AIP ADVANCES, 2018, 8 (05)
[8]   Magnetic Core-Size Distribution of Magnetic Nanoparticles Estimated From Magnetization, AC Susceptibility, and Relaxation Measurements [J].
Elrefai, Ahmed L. ;
Sasayama, Teruyoshi ;
Yoshida, Takashi ;
Enpuku, Keiji .
IEEE TRANSACTIONS ON MAGNETICS, 2017, 53 (11)
[9]   Estimation of magnetic moment and anisotropy energy of magnetic markers for biosensing application [J].
Enpuku, K. ;
Sasayama, T. ;
Yoshida, T. .
JOURNAL OF APPLIED PHYSICS, 2016, 119 (18)
[10]   Tomographic imaging using the nonlinear response of magnetic particles [J].
Gleich, B ;
Weizenecker, R .
NATURE, 2005, 435 (7046) :1214-1217