Prediction of Tensile Strength of Unidirectional CFRP Composites

被引:40
作者
Okabe, T. [1 ]
Ishii, K. [2 ]
Nishikawa, M. [3 ]
Takeda, N. [4 ]
机构
[1] Tohoku Univ, Dept Aerosp Engn, Aoba Ku, Sendai, Miyagi 9808579, Japan
[2] Japan Airlines Int, Dept Engn, Airframe Sect, Tokyo, Japan
[3] Tohoku Univ, Dept Nanomech, Sendai, Miyagi 9808579, Japan
[4] Univ Tokyo, Dept Adv Energy, Tokyo 1138654, Japan
关键词
Fiber-reinforced composite; tensile strength; spring element model; size scaling; micromechanics; FIBER-REINFORCED COMPOSITES; SHEAR-LAG MODEL; MATRIX COMPOSITES; SIMULATION; RELIABILITY; FAILURE;
D O I
10.1163/092430409X12605406698273
中图分类号
TB33 [复合材料];
学科分类号
摘要
The tensile strength of unidirectional carbon fiber-reinforced plastic (CFRP) composites was predicted by numerical simulation plus size scaling. The fiber strength distribution used in the numerical simulation was determined from the fragmentation process in a single fiber composite. Since the experimental data obviously did not fit the normal Weibull distribution, we fitted them with the Weibull of Weibull model, considering the statistical distribution of scale parameters of fiber strength in the normal Weibull model. Moreover, the constitutive law of the matrix was derived from the stress-strain curves of the angle ply laminates, utilizing the micromechanics approach proposed by Tohgo et al. [9]. Based on these parameters, we simulated the tensile fracture of unidirectional CFRP composites with the spring element model (SEM). The predicted tensile strength by numerical simulation plus size scaling agreed well with the experimental data. The results also confirmed that the Weibull of Weibull model is important to predict size-dependent composite strength. (C) Koninklijke Brill NV, Leiden, 2010
引用
收藏
页码:229 / 241
页数:13
相关论文
共 50 条
  • [41] Prediction of long-term durability of unidirectional CFRP
    Koyanagi, Jun
    Nakada, Masayuki
    Miyano, Yasushi
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2011, 30 (15) : 1305 - 1313
  • [42] Micromechanical strength formulae of unidirectional composites
    Huang, ZM
    MATERIALS LETTERS, 1999, 40 (04) : 164 - 169
  • [43] Determination of Tensile Fatigue Life of Unidirectional CFRP Specimens by Strand Testing
    Yasushi Miyano
    Masayuki Nakada
    Hiroshi Kudoh
    Rokuro Muki
    Mechanics of Time-Dependent Materials, 2000, 4 : 127 - 137
  • [44] Determination of tensile fatigue life of unidirectional CFRP specimens by strand testing
    Miyano, Y
    Nakada, M
    Kudoh, H
    Muki, R
    MECHANICS OF TIME-DEPENDENT MATERIALS, 2000, 4 (02) : 127 - 137
  • [45] On strength prediction of laminated composites
    Wang, Li-Sheng
    Huang, Zheng-Ming
    COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 219
  • [46] Failure Prediction of Unidirectional Composites Undergoing Large Deformations
    Aboudi, Jacob
    Volokh, Konstantin Y.
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2015, 82 (07):
  • [47] Effect of IFSS on tensile strength of unidirectional fiber composites using 3D-FEM simulation
    Goda, K
    Miwa, Y
    Kodama, H
    ADVANCED COMPOSITE MATERIALS, 2003, 12 (01) : 73 - 89
  • [48] MinMaxDM DISTRIBUTIONS FOR AN ANALYSIS OF THE TENSILE STRENGTH OF A UNIDIRECTIONAL COMPOSITE
    Paramonov, Yu.
    Andersons, J.
    Kleinhofs, M.
    Blumbergs, I.
    MECHANICS OF COMPOSITE MATERIALS, 2010, 46 (03) : 275 - 286
  • [49] Numerical study for tensile strength prediction of unidirectional carbon fiber-reinforced composite considering fiber surface stress concentration
    Yamamoto, Go
    Okabe, Tomonaga
    MECHANICAL ENGINEERING JOURNAL, 2019, 6 (03):
  • [50] TENSILE PROPERTIES OF REAL UNIDIRECTIONAL KEVLAR EPOXY COMPOSITES
    MITTELMAN, A
    ROMAN, I
    COMPOSITES, 1990, 21 (01): : 63 - 69