Multi-Scale Separable Network for Ultra-High-Definition Video Deblurring

被引:11
作者
Deng, Senyou [1 ]
Ren, Wenqi [1 ,2 ]
Yan, Yanyang [1 ]
Wang, Tao [3 ]
Song, Fenglong [3 ]
Cao, Xiaochun [1 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
[2] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Peoples R China
[3] Huawei Noahs Ark Lab, Hong Kong, Peoples R China
来源
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021) | 2021年
基金
北京市自然科学基金; 国家重点研发计划; 中国国家自然科学基金;
关键词
D O I
10.1109/ICCV48922.2021.01377
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although recent research has witnessed a significant progress on the video deblurring task, these methods struggle to reconcile inference efficiency and visual quality simultaneously, especially on ultra-high-definition (UHD) videos (e.g., 4K resolution). To address the problem, we propose a novel deep model for fast and accurate UHD Video Deblurring (UHDVD). The proposed UHDVD is achieved by a separable-patch architecture, which collaborates with a multi-scale integration scheme to achieve a large receptive field without adding the number of generic convolutional layers and kernels. Additionally, we design a residual channel-spatial attention (RCSA) module to improve accuracy and reduce the depth of the network appropriately. The proposed UHDVD is the first real-time deblurring model for 4K videos at 35 fps. To train the proposed model, we build a new dataset comprised of 4K blurry videos and corresponding sharp frames using three different smartphones. Comprehensive experimental results show that our network performs favorably against the state-ofthe-art methods on both the 4K dataset and public benchmarks in terms of accuracy, speed, and model size.
引用
收藏
页码:14010 / 14019
页数:10
相关论文
共 56 条
[1]  
[Anonymous], 2019, CVPR, DOI DOI 10.1109/CVPR.2019.00397
[2]  
[Anonymous], 2016, CoRR. abs/1511.07122
[3]  
[Anonymous], 2014, CVPR, DOI DOI 10.1109/CVPR.2014.348
[4]  
[Anonymous], 2013, CVPR, DOI DOI 10.1109/CVPR.2013.116
[5]  
[Anonymous], 2018, CVPR, DOI DOI 10.1109/CVPR.2018.00692
[6]  
[Anonymous], 2018, CVPR, DOI DOI 10.1109/CVPR.2018.00853
[7]  
[Anonymous], 2020, CVPR, DOI DOI 10.1109/CVPR42600.2020.00368
[8]  
[Anonymous], 2018, CVPR, DOI DOI 10.1109/CVPR.2018.00709
[9]  
[Anonymous], 2020, CVPR, DOI DOI 10.1109/CVPR42600.2020.00366
[10]  
[Anonymous], 2017, CVPR, DOI DOI 10.1109/CVPR.2017.244